Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
|
@@ -14,16 +14,66 @@ def CLIP_model():
|
|
| 14 |
token = CLIPTokenizerFast.from_pretrained(model_id)
|
| 15 |
processor = CLIPProcessor.from_pretrained(model_id)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
def hello_name(name):
|
| 19 |
-
return "Hello " + name
|
| 20 |
|
| 21 |
def main():
|
| 22 |
CLIP_model()
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
iface.launch(inline = False)
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
if __name__ == "__main__":
|
| 29 |
-
main()
|
|
|
|
|
|
| 14 |
token = CLIPTokenizerFast.from_pretrained(model_id)
|
| 15 |
processor = CLIPProcessor.from_pretrained(model_id)
|
| 16 |
|
| 17 |
+
def load_data():
|
| 18 |
+
global data
|
| 19 |
+
data = load_dataset(
|
| 20 |
+
'frgfm/imagenette',
|
| 21 |
+
'full_size',
|
| 22 |
+
split = 'train',
|
| 23 |
+
ignore_verifications = False
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def embedding_input(text_input):
|
| 27 |
+
token_input = token(text_input, return_tensors = "pt")
|
| 28 |
+
text_embedd = model.get_text_features(**token_input)
|
| 29 |
+
return text_embedd
|
| 30 |
+
|
| 31 |
+
def embedding_img():
|
| 32 |
+
global img_arr, images
|
| 33 |
+
images = data['image']
|
| 34 |
+
batch_size = 10
|
| 35 |
+
img_arr = None
|
| 36 |
+
for i in tqdm(range(0, len(images), batch_size)):
|
| 37 |
+
batch = images[i:i+batch_size]
|
| 38 |
+
|
| 39 |
+
batch = processor(
|
| 40 |
+
text = None,
|
| 41 |
+
images = batch,
|
| 42 |
+
return_tensors = 'pt',
|
| 43 |
+
padding = True
|
| 44 |
+
)['pixel_values']
|
| 45 |
+
|
| 46 |
+
batch_emb = model.get_image_features(pixel_values=batch)
|
| 47 |
+
batch_emb = batch_emb.squeeze(0)
|
| 48 |
+
batch_emb = batch_emb.detach().numpy()
|
| 49 |
+
|
| 50 |
+
if img_arr is None:
|
| 51 |
+
img_arr = batch_emb
|
| 52 |
+
|
| 53 |
+
else:
|
| 54 |
+
img_arr = np.concatenate((img_arr, batch_emb), axis = 0)
|
| 55 |
+
return images, img_arr
|
| 56 |
+
|
| 57 |
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def main():
|
| 60 |
CLIP_model()
|
| 61 |
+
load_data()
|
| 62 |
+
embedding_img()
|
| 63 |
+
iface = gr.Interface(fn = process, inputs = "text", outputs = "image")
|
| 64 |
iface.launch(inline = False)
|
| 65 |
|
| 66 |
|
| 67 |
+
def process(text):
|
| 68 |
+
text_input = embedding_input(text)
|
| 69 |
+
image_emb = (img_arr.T/np.linalg.norm(img_arr, axis = 1)).T
|
| 70 |
+
text_emb = text_input.detach().numpy()
|
| 71 |
+
scores = np.dot(text_emb, image_emb.T)
|
| 72 |
+
idx = np.argsort(-scores[0])[0]
|
| 73 |
+
return images[idx]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
if __name__ == "__main__":
|
| 78 |
+
main()
|
| 79 |
+
|