File size: 20,044 Bytes
ad69efd a7284df ad69efd a7284df ad69efd a7284df ad69efd a7284df 610ef64 a7284df 610ef64 a7284df 610ef64 a7284df ad69efd a7284df 610ef64 ad69efd a7284df ad69efd a7284df ad69efd a7284df ad69efd a7284df ad69efd 610ef64 ad69efd a7284df ad69efd a7284df 610ef64 a7284df 610ef64 ad69efd a7284df ad69efd 610ef64 a7284df ad69efd 610ef64 ad69efd 610ef64 ad69efd a7284df 610ef64 ad69efd 610ef64 ad69efd 610ef64 ad69efd 610ef64 ad69efd 610ef64 a7284df 610ef64 a7284df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import io, math, json, gzip
import numpy as np
import pandas as pd
import gradio as gr
# -------------------------------
# Core metric helpers
# -------------------------------
def shannon_entropy_from_counts(counts: np.ndarray) -> float:
counts = counts.astype(float)
total = counts.sum()
if total <= 0:
return 0.0
p = counts / total
p = p[p > 0]
return float(-(p * np.log2(p)).sum())
def numeric_binned_entropy(series: pd.Series, bins: int = 32):
x = series.dropna().astype(float).values
if x.size == 0:
return 0.0, 0
try:
qs = np.linspace(0, 1, bins + 1)
edges = np.unique(np.nanpercentile(x, qs * 100))
if len(edges) < 2:
edges = np.unique(x)
hist, _ = np.histogram(x, bins=edges)
except Exception:
hist, _ = np.histogram(x, bins=bins)
H = shannon_entropy_from_counts(hist)
k = np.count_nonzero(hist)
return H, max(k, 1)
def categorical_entropy(series: pd.Series):
x = series.dropna().astype(str).values
if x.size == 0:
return 0.0, 0
vals, counts = np.unique(x, return_counts=True)
H = shannon_entropy_from_counts(counts)
return H, len(vals)
def monotone_runs_and_entropy(series: pd.Series):
x = series.dropna().values
n = len(x)
if n <= 1:
return 1, 0.0
runs = [1]
for i in range(1, n):
if x[i] >= x[i-1]:
runs[-1] += 1
else:
runs.append(1)
run_lengths = np.array(runs, dtype=float)
H = shannon_entropy_from_counts(run_lengths)
return len(runs), H
def sortedness_score(series: pd.Series) -> float:
x = series.dropna().values
if len(x) <= 1:
return 1.0
return float(np.mean(np.diff(x) >= 0))
def gzip_compress_ratio_from_bytes(b: bytes) -> float:
if len(b) == 0:
return 1.0
out = io.BytesIO()
with gzip.GzipFile(fileobj=out, mode="wb") as f:
f.write(b)
compressed = out.getvalue()
return len(compressed) / len(b)
def dataframe_gzip_ratio(df: pd.DataFrame, max_rows: int = 20000) -> float:
s = df.sample(min(len(df), max_rows), random_state=0) if len(df) > max_rows else df
raw = s.to_csv(index=False).encode("utf-8", errors="ignore")
return gzip_compress_ratio_from_bytes(raw)
def pareto_maxima_count(points: np.ndarray) -> int:
if points.shape[1] < 2 or points.shape[0] == 0:
return 0
P = points[:, :2]
order = np.lexsort((-P[:, 1], -P[:, 0]))
best_y = -np.inf
count = 0
for idx in order:
y = P[idx, 1]
if y >= best_y:
count += 1
best_y = y
return int(count)
def kd_entropy(points: np.ndarray, max_leaf: int = 128, axis: int = 0) -> float:
n = points.shape[0]
if n == 0:
return 0.0
if n <= max_leaf:
return 0.0
vals = points[:, axis]
med = np.median(vals)
left = points[vals <= med]
right = points[vals > med]
pL = len(left) / n
pR = len(right) / n
H_here = 0.0
for p in (pL, pR):
if p > 0:
H_here += -p * math.log(p, 2)
next_axis = (axis + 1) % points.shape[1]
return H_here + kd_entropy(left, max_leaf, next_axis) + kd_entropy(right, max_leaf, next_axis)
def normalize(value: float, max_value: float) -> float:
if max_value <= 0:
return 0.0
v = max(0.0, min(1.0, value / max_value))
return float(v)
# -------------------------------
# Scoring + interpretations
# -------------------------------
def grade_band(value: float, thresholds: list, labels: list):
"""Generic banding helper: thresholds ascending; returns (label_idx, label)."""
for i, t in enumerate(thresholds):
if value <= t:
return i, labels[i]
return len(labels)-1, labels[-1]
def interpret_report(report: dict) -> dict:
"""Produce human-friendly interpretations with color badges and advice."""
r, c = report["shape"]["rows"], report["shape"]["cols"]
max_bits = math.log2(max(2, r))
# Harvestable Energy (0..1)
he = report.get("harvestable_energy_score", 0.0)
he_pct = round(100 * he)
he_idx, he_label = grade_band(1.0 - he, [0.15, 0.35, 0.6, 0.85], # invert so higher is better
["Excellent", "High", "Moderate", "Low", "Very Low"])
he_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][he_idx]
# Gzip ratio (lower is better)
gz = report.get("gzip_compression_ratio", 1.0)
gz_idx, gz_label = grade_band(gz, [0.45, 0.7, 0.9, 1.1], ["Highly compressible", "Compressible", "Some structure", "Low structure", "Unstructured"])
gz_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][gz_idx]
# kd-entropy (lower is better). Normalize by log2(n)
Hkd = float(report.get("kd_partition_entropy_bits", 0.0))
Hkd_norm = normalize(Hkd, max_bits)
kd_idx, kd_label = grade_band(Hkd_norm, [0.15, 0.3, 0.5, 0.75], ["Simple spatial blocks", "Moderately simple", "Mixed", "Complex", "Highly complex"])
kd_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][kd_idx]
# Run-entropy / Sortedness aggregation for numeric columns
per_col = report.get("per_column", {})
run_H = []
sorted_fracs = []
for col, st in per_col.items():
if "run_entropy_bits" in st:
run_H.append(st["run_entropy_bits"])
sorted_fracs.append(st.get("sortedness_fraction", 0.0))
if run_H:
runH_mean = float(np.mean(run_H))
runH_norm = normalize(runH_mean, max_bits)
sort_mean = float(np.mean(sorted_fracs)) if sorted_fracs else 0.0
else:
runH_norm = 1.0
sort_mean = 0.0
run_idx, run_label = grade_band(runH_norm, [0.15, 0.3, 0.5, 0.75], ["Long smooth runs", "Mostly smooth", "Mixed runs", "Choppy", "Highly choppy"])
run_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][run_idx]
sort_idx, sort_label = grade_band(1.0 - sort_mean, [0.15, 0.3, 0.5, 0.75], ["Highly sorted", "Mostly sorted", "Partially sorted", "Barely sorted", "Unsorted"])
sort_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][sort_idx]
# Duplicate rows
dup = report.get("duplicate_row_fraction", 0.0)
dup_idx, dup_label = grade_band(dup, [0.01, 0.05, 0.15, 0.3], ["Clean", "Light dups", "Moderate dups", "High dups", "Very high dups"])
dup_color = ["#10b981", "#34d399", "#f59e0b", "#f97316", "#ef4444"][dup_idx]
# Recommendations (simple rule-based)
recs = []
if he >= 0.7:
recs.append("Leverage **adaptive algorithms** (TimSort-style merges, linear hull/skyline passes) for near-linear performance.")
elif he >= 0.4:
recs.append("Consider **light preprocessing** (bucketing, dedupe) to unlock more adaptive speedups.")
else:
recs.append("Expect **near worst-case costs**; use robust algorithms and consider feature engineering/cleaning.")
if gz <= 0.7:
recs.append("Data is **highly compressible** β try dictionary/columnar encoding and caching to cut memory/IO.")
elif gz >= 1.0:
recs.append("Data is **hard to compress** β prioritize dimensionality reduction or noise filtering.")
if runH_norm <= 0.3 or sort_mean >= 0.7:
recs.append("Columns show **long monotone runs** β merges and single-pass scans will be efficient.")
else:
recs.append("Columns are **choppy** β batch/aggregate before sorting to reduce comparisons.")
if Hkd_norm <= 0.3:
recs.append("Spatial structure is **simple** β kd/quad trees will be shallow; range queries will be fast.")
elif Hkd_norm >= 0.6:
recs.append("Spatial structure is **complex** β consider clustering/tiling before building indexes.")
if dup >= 0.05:
recs.append("De-duplicate rows to lower entropy and improve compression & joins.")
# Summary verdict
verdict = ["Outstanding structure for fast algorithms.",
"Strong latent order; plenty of speed to harvest.",
"Mixed: some order present; moderate gains possible.",
"Low order; focus on cleaning and feature engineering.",
"Chaotic: assume worst-case runtimes."][he_idx]
return {
"he": {"pct": he_pct, "label": he_label, "color": he_color},
"gzip": {"value": gz, "label": gz_label, "color": gz_color},
"kd": {"value": Hkd, "label": kd_label, "color": kd_color},
"runs": {"value": runH_norm, "label": run_label, "color": run_color},
"sorted": {"value": sort_mean, "label": sort_label, "color": sort_color},
"dup": {"value": dup, "label": dup_label, "color": dup_color},
"verdict": verdict,
"recs": recs[:6]
}
# -------------------------------
# Compute metrics
# -------------------------------
def compute_metrics(df: pd.DataFrame) -> dict:
report = {}
n_rows, n_cols = df.shape
report["shape"] = {"rows": int(n_rows), "cols": int(n_cols)}
# Types
types = {}
for c in df.columns:
s = df[c]
if pd.api.types.is_numeric_dtype(s):
types[c] = "numeric"
elif pd.api.types.is_datetime64_any_dtype(s) or "date" in str(s.dtype).lower():
types[c] = "datetime"
else:
types[c] = "categorical"
report["column_types"] = types
missing = df.isna().mean().to_dict()
dup_ratio = float((len(df) - len(df.drop_duplicates())) / max(1, len(df)))
report["missing_fraction_per_column"] = {k: float(v) for k, v in missing.items()}
report["duplicate_row_fraction"] = dup_ratio
col_stats = {}
for c in df.columns:
s = df[c]
if types[c] == "numeric":
H, k = numeric_binned_entropy(s)
runs, Hruns = monotone_runs_and_entropy(s)
sorted_frac = sortedness_score(s)
col_stats[c] = {
"entropy_binned_bits": float(H),
"active_bins": int(k),
"monotone_runs": int(runs),
"run_entropy_bits": float(Hruns),
"sortedness_fraction": float(sorted_frac),
"min": float(np.nanmin(s.values)) if s.dropna().shape[0] else None,
"max": float(np.nanmax(s.values)) if s.dropna().shape[0] else None,
"mean": float(np.nanmean(s.values)) if s.dropna().shape[0] else None,
"std": float(np.nanstd(s.values)) if s.dropna().shape[0] else None,
}
elif types[c] == "datetime":
try:
sd = pd.to_datetime(s, errors="coerce")
min_dt = sd.min()
max_dt = sd.max()
col_stats[c] = {
"entropy_bits": 0.0,
"unique_values": int(sd.nunique(dropna=True)),
"min_datetime": None if pd.isna(min_dt) else min_dt.isoformat(),
"max_datetime": None if pd.isna(max_dt) else max_dt.isoformat(),
}
except Exception:
col_stats[c] = {"entropy_bits": 0.0, "unique_values": int(s.nunique(dropna=True))}
else:
H, k = categorical_entropy(s)
# top-5 categories
vc = s.astype(str).value_counts(dropna=True).head(5)
top5 = [{"value": str(idx), "count": int(cnt)} for idx, cnt in vc.items()]
col_stats[c] = {"entropy_bits": float(H), "unique_values": int(k), "top_values": top5}
report["per_column"] = col_stats
try:
gzip_ratio = dataframe_gzip_ratio(df)
except Exception:
gzip_ratio = 1.0
report["gzip_compression_ratio"] = float(gzip_ratio)
num_cols = [c for c, t in types.items() if t == "numeric"]
if len(num_cols) >= 2:
X = df[num_cols].select_dtypes(include=[np.number]).values.astype(float)
X = X[~np.isnan(X).any(axis=1)]
if X.shape[0] >= 3:
pts2 = X[:, :2]
report["pareto_maxima_2d"] = int(pareto_maxima_count(pts2))
try:
H_kd = kd_entropy(pts2, max_leaf=128, axis=0)
except Exception:
H_kd = 0.0
report["kd_partition_entropy_bits"] = float(H_kd)
else:
report["pareto_maxima_2d"] = 0
report["kd_partition_entropy_bits"] = 0.0
else:
report["pareto_maxima_2d"] = 0
report["kd_partition_entropy_bits"] = 0.0
# Harvestable Energy
max_bits = math.log2(max(2, n_rows))
he_parts = []
he_parts.append(1.0 - max(0.0, min(1.0, report["gzip_compression_ratio"])))
num_run_entropies = []
for c in df.columns:
st = col_stats.get(c, {})
if "run_entropy_bits" in st:
num_run_entropies.append(st["run_entropy_bits"])
if num_run_entropies:
mean_run_H = float(np.mean(num_run_entropies))
he_parts.append(1.0 - normalize(mean_run_H, max_bits))
H_kd = report.get("kd_partition_entropy_bits", 0.0)
if H_kd is not None:
he_parts.append(1.0 - normalize(float(H_kd), max_bits))
if he_parts:
HE = float(np.mean([max(0.0, min(1.0, v)) for v in he_parts]))
else:
HE = 0.0
report["harvestable_energy_score"] = HE
return report
# -------------------------------
# Dataset shape summary for other models
# -------------------------------
def dataset_shape_summary(df: pd.DataFrame, report: dict, max_examples: int = 3) -> dict:
"""Compact JSON describing the dataset schema, ranges, and examples for LLM ingestion."""
cols = []
for name, t in report["column_types"].items():
col_info = {"name": name, "type": t}
per = report["per_column"].get(name, {})
if t == "numeric":
col_info.update({
"min": per.get("min"),
"max": per.get("max"),
"mean": per.get("mean"),
"std": per.get("std"),
"missing_frac": report["missing_fraction_per_column"].get(name, 0.0)
})
elif t == "datetime":
col_info.update({
"min": per.get("min_datetime"),
"max": per.get("max_datetime"),
"missing_frac": report["missing_fraction_per_column"].get(name, 0.0)
})
else: # categorical or other
col_info.update({
"unique_values": per.get("unique_values"),
"top_values": per.get("top_values", []),
"missing_frac": report["missing_fraction_per_column"].get(name, 0.0)
})
cols.append(col_info)
# few example rows (stringified to be safe)
examples = df.head(max_examples).astype(str).to_dict(orient="records")
shape = {
"n_rows": report["shape"]["rows"],
"n_cols": report["shape"]["cols"],
"columns": cols,
"duplicates_fraction": report.get("duplicate_row_fraction", 0.0),
"gzip_compression_ratio": report.get("gzip_compression_ratio", None),
"harvestable_energy_score": report.get("harvestable_energy_score", None),
"examples": examples
}
return shape
# -------------------------------
# UI rendering helpers
# -------------------------------
def badge(text: str, color: str) -> str:
return f"<span style='background:{color};color:white;padding:6px 10px;border-radius:999px;font-weight:600'>{text}</span>"
def metric_card(title: str, value: str, badge_html: str) -> str:
return f"""
<div style="flex:1;min-width:220px;border:1px solid #e5e7eb;border-radius:14px;padding:14px 16px;">
<div style="font-size:14px;color:#6b7280;margin-bottom:8px">{title}</div>
<div style="font-size:22px;font-weight:700;margin-bottom:10px">{value}</div>
{badge_html}
</div>
"""
def render_dashboard(report: dict, interp: dict) -> str:
he = interp["he"]
gz = interp["gzip"]
kd = interp["kd"]
runs = interp["runs"]
sortb = interp["sorted"]
dup = interp["dup"]
cards = []
cards.append(metric_card("Harvestable Energy", f"{he['pct']} / 100", badge(he['label'], he['color'])))
cards.append(metric_card("Compressibility (gzip)", f"{gz['value']:.3f}", badge(gz['label'], gz['color'])))
cards.append(metric_card("Range-Partition Entropy (kd bits)", f"{kd['value']:.3f}", badge(kd['label'], kd['color'])))
cards.append(metric_card("Run-Entropy (avg, normalized)", f"{runs['value']:.2f}", badge(runs['label'], runs['color'])))
cards.append(metric_card("Sortedness (avg fraction)", f"{sortb['value']:.2f}", badge(sortb['label'], sortb['color'])))
cards.append(metric_card("Duplicate Rows (fraction)", f"{dup['value']:.2f}", badge(dup['label'], dup['color'])))
grid = "<div style='display:flex;flex-wrap:wrap;gap:12px'>" + "".join(cards) + "</div>"
verdict = f"<div style='margin-top:12px;padding:14px 16px;background:#f9fafb;border:1px solid #e5e7eb;border-radius:14px'><b>Verdict:</b> {interp['verdict']}</div>"
return grid + verdict
def render_recs(interp: dict) -> str:
lis = "".join([f"<li>{r}</li>" for r in interp["recs"]])
return f"<ul>{lis}</ul>"
def render_columns(report: dict) -> str:
rows = []
for c, st in report.get("per_column", {}).items():
miss = report["missing_fraction_per_column"].get(c, 0.0)
if "entropy_binned_bits" in st:
rows.append(f"<tr><td><b>{c}</b> (num)</td><td>{miss:.1%}</td><td>{st['entropy_binned_bits']:.2f}</td><td>{st['monotone_runs']}</td><td>{st['run_entropy_bits']:.2f}</td><td>{st['sortedness_fraction']:.2f}</td></tr>")
elif "entropy_bits" in st:
rows.append(f"<tr><td><b>{c}</b> (cat)</td><td>{miss:.1%}</td><td>{st['entropy_bits']:.2f}</td><td>-</td><td>-</td><td>-</td></tr>")
else:
rows.append(f"<tr><td><b>{c}</b></td><td>{miss:.1%}</td><td>-</td><td>-</td><td>-</td><td>-</td></tr>")
header = "<tr><th>Column</th><th>Missing</th><th>Entropy</th><th>Monotone Runs</th><th>Run-Entropy</th><th>Sortedness</th></tr>"
table = "<table style='width:100%;border-collapse:collapse'>" + header + "".join(rows) + "</table>"
table = table.replace("<tr>", "<tr style='border-bottom:1px solid #e5e7eb'>")
table = table.replace("<th>", "<th style='text-align:left;padding:8px 6px;color:#374151'>")
table = table.replace("<td>", "<td style='padding:8px 6px;color:#111827'>")
return table
# -------------------------------
# Gradio app
# -------------------------------
def analyze(file):
if file is None:
return "{}", "Please upload a CSV.", "", "", "{}"
try:
df = pd.read_csv(file.name)
except Exception as e:
return "{}", f"Failed to read CSV: {e}", "", "", "{}"
report = compute_metrics(df)
interp = interpret_report(report)
shape = dataset_shape_summary(df, report, max_examples=3)
report_json = json.dumps(report, indent=2)
dashboard_html = render_dashboard(report, interp)
recs_html = render_recs(interp)
cols_html = render_columns(report)
shape_json = json.dumps(shape, indent=2)
return report_json, dashboard_html, recs_html, cols_html, shape_json
with gr.Blocks(title="OrderLens β Data Interpreter") as demo:
gr.Markdown("# OrderLens β Data Interpreter")
gr.Markdown("Upload a CSV and get **readable** structure metrics with plain-language guidance.")
with gr.Row():
inp = gr.File(file_types=[".csv"], label="CSV file")
btn = gr.Button("Analyze", variant="primary")
gr.Markdown("---")
gr.Markdown("### Dashboard") # color-coded cards + verdict
dash = gr.HTML()
gr.Markdown("### Recommendations") # actionable tips
recs = gr.HTML()
gr.Markdown("### Column Details") # per-column table
cols = gr.HTML()
gr.Markdown("### Dataset Shape Summary (JSON)") # compact schema for other models
shape_out = gr.Code(label="Shape", language="json")
gr.Markdown("### Raw report (JSON)") # API-friendly
json_out = gr.Code(label="Report", language="json")
btn.click(analyze, inputs=inp, outputs=[json_out, dash, recs, cols, shape_out])
if __name__ == "__main__":
demo.launch() |