Spaces:
Build error
Build error
| static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) { | |
| const int64_t row = blockIdx.x; | |
| float maxval = -FLT_MAX; | |
| int argmax = -1; | |
| const float * rowx = x + row * ncols; | |
| for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) { | |
| const float val = rowx[col]; | |
| if (val > maxval) { | |
| maxval = val; | |
| argmax = col; | |
| } | |
| } | |
| for (int offset = 16; offset > 0; offset >>= 1) { | |
| const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE); | |
| const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE); | |
| if (val > maxval) { | |
| maxval = val; | |
| argmax = col; | |
| } | |
| } | |
| const int n_warps = blockDim.x / WARP_SIZE; | |
| const int lane_id = threadIdx.x % WARP_SIZE; | |
| const int warp_id = threadIdx.x / WARP_SIZE; | |
| if (n_warps > 1) { | |
| constexpr int max_warps = 1024 / WARP_SIZE; | |
| __shared__ float shared_maxval[max_warps]; | |
| __shared__ int shared_argmax[max_warps]; | |
| if (lane_id == 0) { | |
| shared_maxval[warp_id] = maxval; | |
| shared_argmax[warp_id] = argmax; | |
| } | |
| __syncthreads(); | |
| if (warp_id == 0) { | |
| if (lane_id < n_warps) { | |
| maxval = shared_maxval[lane_id]; | |
| argmax = shared_argmax[lane_id]; | |
| } | |
| for (int offset = 16; offset > 0; offset >>= 1) { | |
| const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE); | |
| const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE); | |
| if (val > maxval) { | |
| maxval = val; | |
| argmax = col; | |
| } | |
| } | |
| } | |
| } | |
| if (warp_id == 0 && lane_id == 0) { | |
| dst[row] = argmax; | |
| } | |
| } | |
| void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_I32); | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| const int64_t ne00 = src0->ne[0]; | |
| const int64_t nrows = ggml_nrows(src0); | |
| const float * src0_d = (const float *) src0->data; | |
| int32_t * dst_d = (int32_t *) dst->data; | |
| cudaStream_t stream = ctx.stream(); | |
| const int64_t num_blocks = nrows; | |
| const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE); | |
| const dim3 blocks_dim(num_threads, 1, 1); | |
| const dim3 blocks_num(num_blocks, 1, 1); | |
| argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00); | |
| } | |