Spaces:
Build error
Build error
| template <typename T> | |
| struct type_to_gguf_type; | |
| template <> | |
| struct type_to_gguf_type<uint8_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_UINT8; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<int8_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_INT8; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<uint16_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_UINT16; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<int16_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_INT16; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<uint32_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_UINT32; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<int32_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_INT32; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<float> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<bool> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_BOOL; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<std::string> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_STRING; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<uint64_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_UINT64; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<int64_t> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_INT64; | |
| }; | |
| template <> | |
| struct type_to_gguf_type<double> { | |
| static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; | |
| }; | |
| static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = { | |
| {GGUF_TYPE_UINT8, sizeof(uint8_t)}, | |
| {GGUF_TYPE_INT8, sizeof(int8_t)}, | |
| {GGUF_TYPE_UINT16, sizeof(uint16_t)}, | |
| {GGUF_TYPE_INT16, sizeof(int16_t)}, | |
| {GGUF_TYPE_UINT32, sizeof(uint32_t)}, | |
| {GGUF_TYPE_INT32, sizeof(int32_t)}, | |
| {GGUF_TYPE_FLOAT32, sizeof(float)}, | |
| {GGUF_TYPE_BOOL, sizeof(int8_t)}, | |
| {GGUF_TYPE_STRING, 0}, // undefined | |
| {GGUF_TYPE_ARRAY, 0}, // undefined | |
| {GGUF_TYPE_UINT64, sizeof(uint64_t)}, | |
| {GGUF_TYPE_INT64, sizeof(int64_t)}, | |
| {GGUF_TYPE_FLOAT64, sizeof(double)}, | |
| }; | |
| static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); | |
| static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = { | |
| {GGUF_TYPE_UINT8, "u8"}, | |
| {GGUF_TYPE_INT8, "i8"}, | |
| {GGUF_TYPE_UINT16, "u16"}, | |
| {GGUF_TYPE_INT16, "i16"}, | |
| {GGUF_TYPE_UINT32, "u32"}, | |
| {GGUF_TYPE_INT32, "i32"}, | |
| {GGUF_TYPE_FLOAT32, "f32"}, | |
| {GGUF_TYPE_BOOL, "bool"}, | |
| {GGUF_TYPE_STRING, "str"}, | |
| {GGUF_TYPE_ARRAY, "arr"}, | |
| {GGUF_TYPE_UINT64, "u64"}, | |
| {GGUF_TYPE_INT64, "i64"}, | |
| {GGUF_TYPE_FLOAT64, "f64"}, | |
| }; | |
| static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); | |
| size_t gguf_type_size(enum gguf_type type) { | |
| auto it = GGUF_TYPE_SIZE.find(type); | |
| return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; | |
| } | |
| struct gguf_kv { | |
| std::string key; | |
| bool is_array; | |
| enum gguf_type type; | |
| std::vector<int8_t> data; | |
| std::vector<std::string> data_string; | |
| template <typename T> | |
| gguf_kv(const std::string & key, const T value) | |
| : key(key), is_array(false), type(type_to_gguf_type<T>::value) { | |
| GGML_ASSERT(!key.empty()); | |
| data.resize(sizeof(T)); | |
| memcpy(data.data(), &value, sizeof(T)); | |
| } | |
| template <typename T> | |
| gguf_kv(const std::string & key, const std::vector<T> & value) | |
| : key(key), is_array(true), type(type_to_gguf_type<T>::value) { | |
| GGML_ASSERT(!key.empty()); | |
| data.resize(value.size()*sizeof(T)); | |
| for (size_t i = 0; i < value.size(); ++i) { | |
| const T tmp = value[i]; | |
| memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); | |
| } | |
| } | |
| gguf_kv(const std::string & key, const std::string & value) | |
| : key(key), is_array(false), type(GGUF_TYPE_STRING) { | |
| GGML_ASSERT(!key.empty()); | |
| data_string.push_back(value); | |
| } | |
| gguf_kv(const std::string & key, const std::vector<std::string> & value) | |
| : key(key), is_array(true), type(GGUF_TYPE_STRING) { | |
| GGML_ASSERT(!key.empty()); | |
| data_string = value; | |
| } | |
| const std::string & get_key() const { | |
| return key; | |
| } | |
| const enum gguf_type & get_type() const { | |
| return type; | |
| } | |
| size_t get_ne() const { | |
| if (type == GGUF_TYPE_STRING) { | |
| const size_t ne = data_string.size(); | |
| GGML_ASSERT(is_array || ne == 1); | |
| return ne; | |
| } | |
| const size_t type_size = gguf_type_size(type); | |
| GGML_ASSERT(data.size() % type_size == 0); | |
| const size_t ne = data.size() / type_size; | |
| GGML_ASSERT(is_array || ne == 1); | |
| return ne; | |
| } | |
| template <typename T> | |
| const T & get_val(const size_t i = 0) const { | |
| GGML_ASSERT(type_to_gguf_type<T>::value == type); | |
| if constexpr (std::is_same<T, std::string>::value) { | |
| GGML_ASSERT(data_string.size() >= i+1); | |
| return data_string[i]; | |
| } | |
| const size_t type_size = gguf_type_size(type); | |
| GGML_ASSERT(data.size() % type_size == 0); | |
| GGML_ASSERT(data.size() >= (i+1)*type_size); | |
| return reinterpret_cast<const T *>(data.data())[i]; | |
| } | |
| void cast(const enum gguf_type new_type) { | |
| const size_t new_type_size = gguf_type_size(new_type); | |
| GGML_ASSERT(data.size() % new_type_size == 0); | |
| type = new_type; | |
| } | |
| }; | |
| struct gguf_tensor_info { | |
| struct ggml_tensor t; // for holding the equivalent info | |
| uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` | |
| }; | |
| struct gguf_context { | |
| uint32_t version = GGUF_VERSION; | |
| std::vector<struct gguf_kv> kv; | |
| std::vector<struct gguf_tensor_info> info; | |
| size_t alignment = GGUF_DEFAULT_ALIGNMENT; | |
| size_t offset = 0; // offset of `data` from beginning of file | |
| size_t size = 0; // size of `data` in bytes | |
| void * data = nullptr; | |
| }; | |
| struct gguf_reader { | |
| FILE * file; | |
| gguf_reader(FILE * file) : file(file) {} | |
| template <typename T> | |
| bool read(T & dst) const { | |
| return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); | |
| } | |
| template <typename T> | |
| bool read(std::vector<T> & dst, const size_t n) const { | |
| dst.resize(n); | |
| for (size_t i = 0; i < dst.size(); ++i) { | |
| if constexpr (std::is_same<T, bool>::value) { | |
| bool tmp; | |
| if (!read(tmp)) { | |
| return false; | |
| } | |
| dst[i] = tmp; | |
| } else { | |
| if (!read(dst[i])) { | |
| return false; | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| bool read(bool & dst) const { | |
| int8_t tmp = -1; | |
| if (!read(tmp)) { | |
| return false; | |
| } | |
| dst = tmp != 0; | |
| return true; | |
| } | |
| bool read(enum ggml_type & dst) const { | |
| int32_t tmp = -1; | |
| if (!read(tmp)) { | |
| return false; | |
| } | |
| dst = ggml_type(tmp); | |
| return true; | |
| } | |
| bool read(enum gguf_type & dst) const { | |
| int32_t tmp = -1; | |
| if (!read(tmp)) { | |
| return false; | |
| } | |
| dst = gguf_type(tmp); | |
| return true; | |
| } | |
| bool read(std::string & dst) const { | |
| uint64_t size = -1; | |
| if (!read(size)) { | |
| return false; | |
| } | |
| dst.resize(size); | |
| return fread(dst.data(), 1, dst.length(), file) == dst.length(); | |
| } | |
| bool read(void * dst, const size_t size) const { | |
| return fread(dst, 1, size, file) == size; | |
| } | |
| }; | |
| struct gguf_context * gguf_init_empty(void) { | |
| return new gguf_context; | |
| } | |
| template<typename T> | |
| bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) { | |
| if (is_array) { | |
| std::vector<T> value; | |
| try { | |
| if (!gr.read(value, n)) { | |
| return false; | |
| } | |
| } catch (std::length_error &) { | |
| fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str()); | |
| return false; | |
| } catch (std::bad_alloc &) { | |
| fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str()); | |
| return false; | |
| } | |
| kv.emplace_back(key, value); | |
| } else { | |
| T value; | |
| if (!gr.read(value)) { | |
| return false; | |
| } | |
| kv.emplace_back(key, value); | |
| } | |
| return true; | |
| } | |
| struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { | |
| const struct gguf_reader gr(file); | |
| struct gguf_context * ctx = new gguf_context; | |
| bool ok = true; | |
| // file magic | |
| { | |
| std::vector<char> magic; | |
| ok = ok && gr.read(magic, 4); | |
| if (!ok) { | |
| fprintf(stderr, "%s: failed to read magic\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| for (uint32_t i = 0; i < magic.size(); i++) { | |
| if (magic[i] != GGUF_MAGIC[i]) { | |
| fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| } | |
| } | |
| // header | |
| int64_t n_kv = 0; | |
| int64_t n_tensors = 0; | |
| if (ok && gr.read(ctx->version)) { | |
| if (ctx->version == 1) { | |
| fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); | |
| ok = false; | |
| } | |
| if (ctx->version > GGUF_VERSION) { | |
| fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", | |
| __func__, ctx->version, GGUF_VERSION); | |
| ok = false; | |
| } | |
| } else { | |
| ok = false; | |
| } | |
| if (ok && gr.read(n_tensors)) { | |
| static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); | |
| if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { | |
| fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n", | |
| __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); | |
| ok = false; | |
| } | |
| } else { | |
| ok = false; | |
| } | |
| if (ok && gr.read(n_kv)) { | |
| static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); | |
| if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { | |
| fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n", | |
| __func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); | |
| ok = false; | |
| } | |
| } else { | |
| ok = false; | |
| } | |
| if (!ok) { | |
| fprintf(stderr, "%s: failed to read header\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| // KV pairs | |
| { | |
| for (int64_t i = 0; ok && i < n_kv; ++i) { | |
| std::string key; | |
| gguf_type type = gguf_type(-1); | |
| bool is_array = false; | |
| uint64_t n = 1; | |
| try { | |
| ok = ok && gr.read(key); | |
| } catch (std::length_error &) { | |
| fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i); | |
| ok = false; | |
| } catch (std::bad_alloc &) { | |
| fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i); | |
| ok = false; | |
| } | |
| for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { | |
| if (key == ctx->kv[j].key) { | |
| fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i); | |
| ok = false; | |
| } | |
| } | |
| if (!ok) { | |
| break; | |
| } | |
| ok = ok && gr.read(type); | |
| if (type == GGUF_TYPE_ARRAY) { | |
| is_array = true; | |
| ok = ok && gr.read(type); | |
| ok = ok && gr.read(n); | |
| } | |
| if (!ok) { | |
| break; | |
| } | |
| switch (type) { | |
| case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break; | |
| case GGUF_TYPE_ARRAY: | |
| default: | |
| { | |
| fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type); | |
| ok = false; | |
| } break; | |
| } | |
| } | |
| if (!ok) { | |
| fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); | |
| const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); | |
| ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx); | |
| if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { | |
| fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| } | |
| // read the tensor info | |
| for (int64_t i = 0; ok && i < n_tensors; ++i) { | |
| struct gguf_tensor_info info; | |
| // tensor name | |
| { | |
| std::string name; | |
| try { | |
| ok = ok && gr.read(name); | |
| } catch (std::length_error &) { | |
| fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i); | |
| ok = false; | |
| } catch (std::bad_alloc &) { | |
| fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i); | |
| ok = false; | |
| } | |
| if (name.length() >= GGML_MAX_NAME) { | |
| fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME); | |
| ok = false; | |
| break; | |
| } | |
| ggml_set_name(&info.t, name.c_str()); | |
| // make sure there are no duplicate tensor names | |
| for (int64_t j = 0; ok && j < i; ++j) { | |
| if (strcmp(info.t.name, ctx->info[j].t.name) == 0) { | |
| fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i); | |
| ok = false; | |
| break; | |
| } | |
| } | |
| } | |
| if (!ok) { | |
| break; | |
| } | |
| // tensor shape | |
| { | |
| uint32_t n_dims = -1; | |
| ok = ok && gr.read(n_dims); | |
| if (n_dims > GGML_MAX_DIMS) { | |
| fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", | |
| __func__, info.t.name, n_dims, GGML_MAX_DIMS); | |
| ok = false; | |
| break; | |
| } | |
| for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { | |
| info.t.ne[j] = 1; | |
| if (j < n_dims) { | |
| ok = ok && gr.read(info.t.ne[j]); | |
| } | |
| // check that all ne are non-negative | |
| if (info.t.ne[j] < 0) { | |
| fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n", | |
| __func__, info.t.name, j, info.t.ne[j]); | |
| ok = false; | |
| break; | |
| } | |
| } | |
| // check that the total number of elements is representable | |
| if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || | |
| (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || | |
| (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { | |
| fprintf(stderr, "%s: total number of elements in tensor '%s' with shape " | |
| "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n", | |
| __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); | |
| ok = false; | |
| break; | |
| } | |
| } | |
| if (!ok) { | |
| break; | |
| } | |
| // tensor type | |
| { | |
| ok = ok && gr.read(info.t.type); | |
| // check that tensor type is within defined range | |
| if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { | |
| fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n", | |
| __func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); | |
| ok = false; | |
| break; | |
| } | |
| const size_t type_size = ggml_type_size(info.t.type); | |
| const int64_t blck_size = ggml_blck_size(info.t.type); | |
| // check that row size is divisible by block size | |
| if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { | |
| fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " | |
| "not a multiple of block size (%" PRId64 ")\n", | |
| __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); | |
| ok = false; | |
| break; | |
| } | |
| // calculate byte offsets given the tensor shape and type | |
| info.t.nb[0] = type_size; | |
| info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); | |
| for (int j = 2; j < GGML_MAX_DIMS; ++j) { | |
| info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; | |
| } | |
| } | |
| if (!ok) { | |
| break; | |
| } | |
| // tensor data offset within buffer | |
| ok = ok && gr.read(info.offset); | |
| ctx->info.push_back(info); | |
| } | |
| if (!ok) { | |
| fprintf(stderr, "%s: failed to read tensor info\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); | |
| // we require the data section to be aligned, so take into account any padding | |
| if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { | |
| fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| // store the current file offset - this is where the data section starts | |
| ctx->offset = ftell(file); | |
| // compute the total size of the data section, taking into account the alignment | |
| { | |
| ctx->size = 0; | |
| for (size_t i = 0; i < ctx->info.size(); ++i) { | |
| const gguf_tensor_info & ti = ctx->info[i]; | |
| if (ti.offset != ctx->size) { | |
| fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n", | |
| __func__, ti.t.name, ti.offset, ctx->size); | |
| fprintf(stderr, "%s: failed to read tensor data\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); | |
| } | |
| } | |
| // load the tensor data only if requested | |
| if (params.ctx != nullptr) { | |
| // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob | |
| // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of | |
| // the ggml_tensor structs to the appropriate locations in the binary blob | |
| // compute the exact size needed for the new ggml_context | |
| const size_t mem_size = | |
| params.no_alloc ? | |
| (n_tensors )*ggml_tensor_overhead() : | |
| (n_tensors + 1)*ggml_tensor_overhead() + ctx->size; | |
| struct ggml_init_params pdata = { | |
| /*mem_size =*/ mem_size, | |
| /*mem_buffer =*/ nullptr, | |
| /*no_alloc =*/ params.no_alloc, | |
| }; | |
| *params.ctx = ggml_init(pdata); | |
| if (*params.ctx == nullptr) { | |
| fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__); | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| struct ggml_context * ctx_data = *params.ctx; | |
| struct ggml_tensor * data = nullptr; | |
| if (!params.no_alloc) { | |
| data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); | |
| ok = ok && data != nullptr; | |
| if (ok) { | |
| ggml_set_name(data, "GGUF tensor data binary blob"); | |
| } | |
| // read the binary blob with the tensor data | |
| ok = ok && gr.read(data->data, ctx->size); | |
| if (!ok) { | |
| fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__); | |
| ggml_free(ctx_data); | |
| *params.ctx = nullptr; | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| ctx->data = data->data; | |
| } | |
| ggml_set_no_alloc(ctx_data, true); | |
| // create the tensors | |
| for (size_t i = 0; i < ctx->info.size(); ++i) { | |
| const struct gguf_tensor_info & info = ctx->info[i]; | |
| struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne); | |
| ok = ok && cur != nullptr; | |
| if (!ok) { | |
| break; | |
| } | |
| ggml_set_name(cur, info.t.name); | |
| // point the data member to the appropriate location in the binary blob using the tensor info | |
| if (!params.no_alloc) { | |
| cur->data = (char *) data->data + info.offset; | |
| } | |
| } | |
| if (!ok) { | |
| fprintf(stderr, "%s: failed to create tensors\n", __func__); | |
| ggml_free(ctx_data); | |
| *params.ctx = nullptr; | |
| gguf_free(ctx); | |
| return nullptr; | |
| } | |
| ggml_set_no_alloc(ctx_data, params.no_alloc); | |
| } | |
| return ctx; | |
| } | |
| struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { | |
| FILE * file = ggml_fopen(fname, "rb"); | |
| if (!file) { | |
| fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname); | |
| return nullptr; | |
| } | |
| struct gguf_context * result = gguf_init_from_file_impl(file, params); | |
| fclose(file); | |
| return result; | |
| } | |
| void gguf_free(struct gguf_context * ctx) { | |
| if (ctx == nullptr) { | |
| return; | |
| } | |
| delete ctx; | |
| } | |
| const char * gguf_type_name(enum gguf_type type) { | |
| auto it = GGUF_TYPE_NAME.find(type); | |
| return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; | |
| } | |
| uint32_t gguf_get_version(const struct gguf_context * ctx) { | |
| return ctx->version; | |
| } | |
| size_t gguf_get_alignment(const struct gguf_context * ctx) { | |
| return ctx->alignment; | |
| } | |
| size_t gguf_get_data_offset(const struct gguf_context * ctx) { | |
| return ctx->offset; | |
| } | |
| int64_t gguf_get_n_kv(const struct gguf_context * ctx) { | |
| return ctx->kv.size(); | |
| } | |
| int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { | |
| // return -1 if key not found | |
| int64_t keyfound = -1; | |
| const int64_t n_kv = gguf_get_n_kv(ctx); | |
| for (int64_t i = 0; i < n_kv; ++i) { | |
| if (strcmp(key, gguf_get_key(ctx, i)) == 0) { | |
| keyfound = i; | |
| break; | |
| } | |
| } | |
| return keyfound; | |
| } | |
| const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| return ctx->kv[key_id].get_key().c_str(); | |
| } | |
| enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); | |
| } | |
| enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].is_array); | |
| return ctx->kv[key_id].get_type(); | |
| } | |
| const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); | |
| return ctx->kv[key_id].data.data(); | |
| } | |
| const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); | |
| return ctx->kv[key_id].data_string[i].c_str(); | |
| } | |
| size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { | |
| return ctx->kv[key_id].data_string.size(); | |
| } | |
| const size_t type_size = gguf_type_size(ctx->kv[key_id].type); | |
| GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); | |
| return ctx->kv[key_id].data.size() / type_size; | |
| } | |
| uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<uint8_t>(); | |
| } | |
| int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<int8_t>(); | |
| } | |
| uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<uint16_t>(); | |
| } | |
| int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<int16_t>(); | |
| } | |
| uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<uint32_t>(); | |
| } | |
| int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<int32_t>(); | |
| } | |
| float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<float>(); | |
| } | |
| uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<uint64_t>(); | |
| } | |
| int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<int64_t>(); | |
| } | |
| double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<double>(); | |
| } | |
| bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<bool>(); | |
| } | |
| const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| return ctx->kv[key_id].get_val<std::string>().c_str(); | |
| } | |
| const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { | |
| GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); | |
| GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); | |
| GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); | |
| return ctx->kv[key_id].data.data(); | |
| } | |
| int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { | |
| return ctx->info.size(); | |
| } | |
| int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { | |
| // return -1 if tensor not found | |
| int64_t tensor_id = -1; | |
| const int64_t n_tensors = gguf_get_n_tensors(ctx); | |
| for (int64_t i = 0; i < n_tensors; ++i) { | |
| if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { | |
| tensor_id = i; | |
| break; | |
| } | |
| } | |
| return tensor_id; | |
| } | |
| size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { | |
| GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); | |
| return ctx->info[tensor_id].offset; | |
| } | |
| const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { | |
| GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); | |
| return ctx->info[tensor_id].t.name; | |
| } | |
| enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { | |
| GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); | |
| return ctx->info[tensor_id].t.type; | |
| } | |
| size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { | |
| GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); | |
| return ggml_nbytes(&ctx->info[tensor_id].t); | |
| } | |
| int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { | |
| const int64_t key_id = gguf_find_key(ctx, key); | |
| if (key_id >= 0) { | |
| ctx->kv.erase(ctx->kv.begin() + key_id); | |
| } | |
| return key_id; | |
| } | |
| template<typename T> | |
| static void gguf_check_reserved_keys(const std::string & key, const T val) { | |
| if (key == GGUF_KEY_GENERAL_ALIGNMENT) { | |
| if constexpr (std::is_same<T, uint32_t>::value) { | |
| GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2"); | |
| } else { | |
| GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32"); | |
| } | |
| } | |
| } | |
| void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, val); | |
| } | |
| void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { | |
| gguf_check_reserved_keys(key, val); | |
| gguf_remove_key(ctx, key); | |
| ctx->kv.emplace_back(key, std::string(val)); | |
| } | |
| void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { | |
| gguf_check_reserved_keys(key, data); | |
| gguf_remove_key(ctx, key); | |
| const size_t nbytes = n*gguf_type_size(type); | |
| std::vector<int8_t> tmp(nbytes); | |
| if (!tmp.empty()) { | |
| memcpy(tmp.data(), data, nbytes); | |
| } | |
| ctx->kv.emplace_back(key, tmp); | |
| ctx->kv.back().cast(type); | |
| } | |
| void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { | |
| gguf_check_reserved_keys(key, data); | |
| gguf_remove_key(ctx, key); | |
| std::vector<std::string> tmp(n); | |
| for (size_t i = 0; i < n; ++i) { | |
| tmp[i] = data[i]; | |
| } | |
| ctx->kv.emplace_back(key, tmp); | |
| } | |
| // set or add KV pairs from another context | |
| void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { | |
| const int64_t n_kv = gguf_get_n_kv(src); | |
| for (int64_t i = 0; i < n_kv; ++i) { | |
| const struct gguf_kv & kv = src->kv[i]; | |
| if (!kv.is_array) { | |
| switch (kv.get_type()) { | |
| case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break; | |
| case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break; | |
| case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break; | |
| case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break; | |
| case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break; | |
| case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break; | |
| case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break; | |
| case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break; | |
| case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break; | |
| case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break; | |
| case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break; | |
| case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break; | |
| case GGUF_TYPE_ARRAY: | |
| default: GGML_ABORT("invalid type"); | |
| } | |
| continue; | |
| } | |
| const size_t ne = kv.get_ne(); | |
| switch (kv.get_type()) { | |
| case GGUF_TYPE_UINT8: | |
| case GGUF_TYPE_INT8: | |
| case GGUF_TYPE_UINT16: | |
| case GGUF_TYPE_INT16: | |
| case GGUF_TYPE_UINT32: | |
| case GGUF_TYPE_INT32: | |
| case GGUF_TYPE_FLOAT32: | |
| case GGUF_TYPE_UINT64: | |
| case GGUF_TYPE_INT64: | |
| case GGUF_TYPE_FLOAT64: | |
| case GGUF_TYPE_BOOL: { | |
| gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne); | |
| } break; | |
| case GGUF_TYPE_STRING: { | |
| std::vector<const char *> tmp(ne); | |
| for (size_t j = 0; j < ne; ++j) { | |
| tmp[j] = kv.data_string[j].c_str(); | |
| } | |
| gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne); | |
| } break; | |
| case GGUF_TYPE_ARRAY: | |
| default: GGML_ABORT("invalid type"); | |
| } | |
| } | |
| } | |
| void gguf_add_tensor( | |
| struct gguf_context * ctx, | |
| const struct ggml_tensor * tensor) { | |
| GGML_ASSERT(tensor); | |
| if (gguf_find_tensor(ctx, tensor->name) != -1) { | |
| GGML_ABORT("duplicate tensor name: %s", tensor->name); | |
| } | |
| struct gguf_tensor_info ti; | |
| ti.t = *tensor; | |
| ti.offset = ctx->info.empty() ? 0 : | |
| ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); | |
| ctx->info.push_back(ti); | |
| } | |
| void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { | |
| const int64_t tensor_id = gguf_find_tensor(ctx, name); | |
| if (tensor_id < 0) { | |
| GGML_ABORT("tensor not found: %s", name); | |
| } | |
| struct ggml_tensor * tensor = &ctx->info[tensor_id].t; | |
| const size_t type_size = ggml_type_size(type); | |
| const int64_t blck_size = ggml_blck_size(type); | |
| tensor->type = type; | |
| GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type"); | |
| tensor->nb[0] = type_size; | |
| tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); | |
| for (int i = 2; i < GGML_MAX_DIMS; i++) { | |
| tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; | |
| } | |
| // update offsets | |
| const int64_t n_tensors = gguf_get_n_tensors(ctx); | |
| for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { | |
| ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); | |
| } | |
| } | |
| void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { | |
| const int64_t tensor_id = gguf_find_tensor(ctx, name); | |
| if (tensor_id < 0) { | |
| GGML_ABORT("tensor not found: %s", name); | |
| } | |
| ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const | |
| } | |
| struct gguf_writer { | |
| std::vector<int8_t> & buf; | |
| gguf_writer(std::vector<int8_t> & buf) : buf(buf) {} | |
| template <typename T> | |
| void write(const T & val) const { | |
| for (size_t i = 0; i < sizeof(val); ++i) { | |
| buf.push_back(reinterpret_cast<const int8_t *>(&val)[i]); | |
| } | |
| } | |
| void write(const std::vector<int8_t> & val) const { | |
| buf.insert(buf.end(), val.begin(), val.end()); | |
| } | |
| void write(const bool & val) const { | |
| const int8_t val8 = val ? 1 : 0; | |
| write(val8); | |
| } | |
| void write(const std::string & val) const { | |
| { | |
| const uint64_t n = val.length(); | |
| write(n); | |
| } | |
| for (size_t i = 0; i < val.length(); ++i) { | |
| buf.push_back(reinterpret_cast<const int8_t *>(val.data())[i]); | |
| } | |
| } | |
| void write(const char * val) const { | |
| write(std::string(val)); | |
| } | |
| void write(const enum ggml_type & val) const { | |
| write(int32_t(val)); | |
| } | |
| void write(const enum gguf_type & val) const { | |
| write(int32_t(val)); | |
| } | |
| void write(const struct gguf_kv & kv) const { | |
| const uint64_t ne = kv.get_ne(); | |
| write(kv.get_key()); | |
| if (kv.is_array) { | |
| write(GGUF_TYPE_ARRAY); | |
| write(kv.get_type()); | |
| write(ne); | |
| } else { | |
| write(kv.get_type()); | |
| } | |
| switch (kv.get_type()) { | |
| case GGUF_TYPE_UINT8: | |
| case GGUF_TYPE_INT8: | |
| case GGUF_TYPE_UINT16: | |
| case GGUF_TYPE_INT16: | |
| case GGUF_TYPE_UINT32: | |
| case GGUF_TYPE_INT32: | |
| case GGUF_TYPE_FLOAT32: | |
| case GGUF_TYPE_UINT64: | |
| case GGUF_TYPE_INT64: | |
| case GGUF_TYPE_FLOAT64: { | |
| write(kv.data); | |
| } break; | |
| case GGUF_TYPE_BOOL: { | |
| for (size_t i = 0; i < ne; ++i) { | |
| write(kv.get_val<bool>(i)); | |
| } | |
| } break; | |
| case GGUF_TYPE_STRING: { | |
| for (size_t i = 0; i < ne; ++i) { | |
| write(kv.get_val<std::string>(i)); | |
| } | |
| } break; | |
| case GGUF_TYPE_ARRAY: | |
| default: GGML_ABORT("invalid type"); | |
| } | |
| } | |
| void write_tensor_meta(const struct gguf_tensor_info & info) const { | |
| write(info.t.name); | |
| const uint32_t n_dims = ggml_n_dims(&info.t); | |
| write(n_dims); | |
| for (uint32_t j = 0; j < n_dims; ++j) { | |
| write(info.t.ne[j]); | |
| } | |
| write(info.t.type); | |
| write(info.offset); | |
| } | |
| void pad(const size_t alignment) const { | |
| while (buf.size() % alignment != 0) { | |
| const int8_t zero = 0; | |
| write(zero); | |
| } | |
| } | |
| void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const { | |
| GGML_ASSERT(buf.size() - offset_data == info.offset); | |
| GGML_ASSERT(ggml_is_contiguous(&info.t)); | |
| const size_t offset = buf.size(); | |
| const size_t nbytes = ggml_nbytes(&info.t); | |
| buf.resize(offset + nbytes); | |
| if (info.t.buffer) { | |
| ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes); | |
| } else { | |
| GGML_ASSERT(info.t.data); | |
| memcpy(buf.data() + offset, info.t.data, nbytes); | |
| } | |
| pad(alignment); | |
| } | |
| }; | |
| void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) { | |
| const struct gguf_writer gw(buf); | |
| const int64_t n_kv = gguf_get_n_kv(ctx); | |
| const int64_t n_tensors = gguf_get_n_tensors(ctx); | |
| // write header | |
| gw.write(GGUF_MAGIC[0]); | |
| gw.write(GGUF_MAGIC[1]); | |
| gw.write(GGUF_MAGIC[2]); | |
| gw.write(GGUF_MAGIC[3]); | |
| gw.write(ctx->version); | |
| gw.write(n_tensors); | |
| gw.write(n_kv); | |
| // write key-value pairs | |
| for (int64_t i = 0; i < n_kv; ++i) { | |
| gw.write(ctx->kv[i]); | |
| } | |
| // write tensor info | |
| for (int64_t i = 0; i < n_tensors; ++i) { | |
| gw.write_tensor_meta(ctx->info[i]); | |
| } | |
| // we require the data section to be aligned | |
| gw.pad(ctx->alignment); | |
| if (only_meta) { | |
| return; | |
| } | |
| const size_t offset_data = gw.buf.size(); | |
| // write tensor data | |
| for (int64_t i = 0; i < n_tensors; ++i) { | |
| gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); | |
| } | |
| } | |
| bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { | |
| FILE * file = ggml_fopen(fname, "wb"); | |
| if (!file) { | |
| fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname); | |
| return false; | |
| } | |
| std::vector<int8_t> buf; | |
| gguf_write_to_buf(ctx, buf, only_meta); | |
| const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size(); | |
| fclose(file); | |
| return ok; | |
| } | |
| size_t gguf_get_meta_size(const struct gguf_context * ctx) { | |
| // only return size | |
| std::vector<int8_t> buf; | |
| gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); | |
| return buf.size(); | |
| } | |
| void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { | |
| std::vector<int8_t> buf; | |
| gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); | |
| memcpy(data, buf.data(), buf.size()); | |
| } | |