Spaces:
Build error
Build error
| from __future__ import annotations | |
| from abc import ABC, ABCMeta, abstractmethod | |
| import logging | |
| from typing import Any, Callable | |
| import numpy as np | |
| from numpy.typing import DTypeLike | |
| logger = logging.getLogger(__name__) | |
| class LazyMeta(ABCMeta): | |
| def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs): | |
| def __getattr__(self, name: str) -> Any: | |
| meta_attr = getattr(self._meta, name) | |
| if callable(meta_attr): | |
| return type(self)._wrap_fn( | |
| (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)), | |
| use_self=self, | |
| ) | |
| elif isinstance(meta_attr, self._tensor_type): | |
| # e.g. self.T with torch.Tensor should still be wrapped | |
| return type(self)._wrap_fn(lambda s: getattr(s, name))(self) | |
| else: | |
| # no need to wrap non-tensor properties, | |
| # and they likely don't depend on the actual contents of the tensor | |
| return meta_attr | |
| namespace["__getattr__"] = __getattr__ | |
| # need to make a builder for the wrapped wrapper to copy the name, | |
| # or else it fails with very cryptic error messages, | |
| # because somehow the same string would end up in every closures | |
| def mk_wrap(op_name: str, *, meta_noop: bool = False): | |
| # need to wrap the wrapper to get self | |
| def wrapped_special_op(self, *args, **kwargs): | |
| return type(self)._wrap_fn( | |
| getattr(type(self)._tensor_type, op_name), | |
| meta_noop=meta_noop, | |
| )(self, *args, **kwargs) | |
| return wrapped_special_op | |
| # special methods bypass __getattr__, so they need to be added manually | |
| # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup | |
| # NOTE: doing this from a metaclass is very convenient | |
| # TODO: make this even more comprehensive | |
| for binary_op in ( | |
| "lt", "le", "eq", "ne", "ge", "gt", "not" | |
| "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul", | |
| "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor", | |
| "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor", | |
| "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor", | |
| ): | |
| attr_name = f"__{binary_op}__" | |
| # the result of these operators usually has the same shape and dtype as the input, | |
| # so evaluation on the meta tensor can be skipped. | |
| namespace[attr_name] = mk_wrap(attr_name, meta_noop=True) | |
| for special_op in ( | |
| "getitem", "setitem", "len", | |
| ): | |
| attr_name = f"__{special_op}__" | |
| namespace[attr_name] = mk_wrap(attr_name, meta_noop=False) | |
| return super().__new__(cls, name, bases, namespace, **kwargs) | |
| # Tree of lazy tensors | |
| class LazyBase(ABC, metaclass=LazyMeta): | |
| _tensor_type: type | |
| _meta: Any | |
| _data: Any | None | |
| _args: tuple | |
| _kwargs: dict[str, Any] | |
| _func: Callable[[Any], Any] | None | |
| def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None): | |
| super().__init__() | |
| self._meta = meta | |
| self._data = data | |
| self._args = args | |
| self._kwargs = kwargs if kwargs is not None else {} | |
| self._func = func | |
| assert self._func is not None or self._data is not None | |
| def __init_subclass__(cls) -> None: | |
| if "_tensor_type" not in cls.__dict__: | |
| raise TypeError(f"property '_tensor_type' must be defined for {cls!r}") | |
| return super().__init_subclass__() | |
| def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any: | |
| # TODO: dict and set | |
| if isinstance(o, (list, tuple)): | |
| L = [] | |
| for item in o: | |
| L.append(LazyBase._recurse_apply(item, fn)) | |
| if isinstance(o, tuple): | |
| L = tuple(L) | |
| return L | |
| elif isinstance(o, LazyBase): | |
| return fn(o) | |
| else: | |
| return o | |
| def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]: | |
| def wrapped_fn(*args, **kwargs): | |
| if kwargs is None: | |
| kwargs = {} | |
| args = ((use_self,) if use_self is not None else ()) + args | |
| meta_args = LazyBase._recurse_apply(args, lambda t: t._meta) | |
| # TODO: maybe handle tensors in kwargs too | |
| if isinstance(meta_noop, bool) and not meta_noop: | |
| try: | |
| res = fn(*meta_args, **kwargs) | |
| except NotImplementedError: | |
| # running some operations on PyTorch's Meta tensors can cause this exception | |
| res = None | |
| else: | |
| # some operators don't need to actually run on the meta tensors | |
| assert len(args) > 0 | |
| res = args[0] | |
| assert isinstance(res, cls) | |
| res = res._meta | |
| # allow operations to override the dtype and shape | |
| if meta_noop is not True: | |
| if isinstance(meta_noop, tuple): | |
| dtype, shape = meta_noop | |
| assert callable(shape) | |
| res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape)) | |
| else: | |
| res = cls.meta_with_dtype_and_shape(meta_noop, res.shape) | |
| if isinstance(res, cls._tensor_type): | |
| return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn) | |
| else: | |
| del res # not needed | |
| # non-tensor return likely relies on the contents of the args | |
| # (e.g. the result of torch.equal) | |
| eager_args = cls.to_eager(args) | |
| return fn(*eager_args, **kwargs) | |
| return wrapped_fn | |
| def to_eager(cls, t: Any) -> Any: | |
| def simple_to_eager(_t: LazyBase) -> Any: | |
| if _t._data is not None: | |
| return _t._data | |
| # NOTE: there's a recursion limit in Python (usually 1000) | |
| assert _t._func is not None | |
| _t._args = cls._recurse_apply(_t._args, simple_to_eager) | |
| _t._data = _t._func(*_t._args, **_t._kwargs) | |
| # sanity check | |
| assert _t._data is not None | |
| assert _t._data.dtype == _t._meta.dtype | |
| assert _t._data.shape == _t._meta.shape | |
| return _t._data | |
| # recurse into lists and/or tuples, keeping their structure | |
| return cls._recurse_apply(t, simple_to_eager) | |
| def eager_to_meta(cls, t: Any) -> Any: | |
| return cls.meta_with_dtype_and_shape(t.dtype, t.shape) | |
| # must be overridden, meta tensor init is backend-specific | |
| def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass | |
| def from_eager(cls, t: Any) -> Any: | |
| if type(t) is cls: | |
| # already lazy | |
| return t | |
| elif isinstance(t, cls._tensor_type): | |
| return cls(meta=cls.eager_to_meta(t), data=t) | |
| else: | |
| return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}") | |
| class LazyNumpyTensor(LazyBase): | |
| _tensor_type = np.ndarray | |
| shape: tuple[int, ...] # Makes the type checker happy in quants.py | |
| def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]: | |
| # The initial idea was to use np.nan as the fill value, | |
| # but non-float types like np.int16 can't use that. | |
| # So zero it is. | |
| cheat = np.zeros(1, dtype) | |
| return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape)) | |
| def astype(self, dtype, *args, **kwargs): | |
| meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape) | |
| full_args = (self, dtype,) + args | |
| return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs))) | |
| def tofile(self, *args, **kwargs): | |
| eager = LazyNumpyTensor.to_eager(self) | |
| return eager.tofile(*args, **kwargs) | |
| # TODO: __array_function__ | |