Spaces:
Runtime error
Runtime error
File size: 21,105 Bytes
1128fce 57458ec 4b050fe 57458ec 4b050fe 57458ec 4b050fe 57458ec 4b050fe 57458ec 2c3616a 57458ec 4b050fe 13a7262 57458ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
"""
Enhanced Viral Content Agent
- Deterministic, testable, dependency-light
- Action loop with tool allow‑list and guarded parsing
- Pluggable LLM backends (Hugging Face Inference API, OpenAI, generic HTTP JSON API) with graceful fallback
- Research tool with real HTTP search (DuckDuckGo HTML) + Wikipedia summary fallback; offline synthetic fallback retained
- JSONL logging and reproducible runs via seed
Runtime targets: Python 3.9+
"""
from __future__ import annotations
import os
import re
import io
import json
import time
import uuid
import math
import random
import logging
import contextlib
from dataclasses import dataclass, field
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, Tuple, Iterable
import requests
# ---------------------------
# Logging
# ---------------------------
LOGGER_NAME = "viral_agent"
logger = logging.getLogger(LOGGER_NAME)
if not logger.handlers:
level = os.getenv("AGENT_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=getattr(logging, level, logging.INFO), format="%(asctime)s %(levelname)s | %(message)s")
# ---------------------------
# Prompts (kept concise; multi‑line strings)
# ---------------------------
PREFIX = (
"You are an Advanced Viral Content Generator with self‑research and self‑improvement capabilities.\n"
"Tools: GENERATE_IDEA, RESEARCH, GENERATE_CONTENT, SELF_EVALUATE, IMPROVE_CONTENT, FORMAT_CONTENT, PUBLISH, COMPLETE.\n"
"Trigger using lines: action: <TOOL> and action_input=<TEXT>.\n"
)
IDEA_GENERATOR_PROMPT = (
"Generate one viral content idea. Consider trending topics, underserved niches, controversy, practical value, and emotion.\n"
"Return a single concise title. Topic: {topic}. History: {history}"
)
RESEARCH_PROMPT = (
"You are researching: {topic}. Summarize key facts with bullet points. Include stats with sources when available."
)
CONTENT_PROMPT = (
"Create {format_type} content about: {topic}. Use the following research notes: {research}.\n"
"Hook, sections with headings, and a clear wrap‑up. Keep it factual and concise."
)
EVALUATE_PROMPT = (
"Evaluate content quality and viral potential from 1‑10 for engagement, accuracy, originality, emotion, readability, and headline strength.\n"
"Return compact JSON with fields per_criterion and overall plus three specific improvements. Content: {content}"
)
IMPROVE_PROMPT = (
"Improve the content using this feedback: {feedback}. Strengthen hook, structure, and specificity. Return the full revised content. Content: {content}"
)
FORMAT_PROMPT = (
"Format the content for publication. Add an SEO title (<70 chars), meta description (<160 chars), h2/h3 where useful, and a short CTA. Content: {content}"
)
PUBLISH_PROMPT = (
"Prepare publication package fields: title, summary, tags[], canonical, published_at (ISO8601 UTC), body. Content: {content}"
)
# ---------------------------
# Utilities
# ---------------------------
def utc_now_iso() -> str:
return datetime.now(timezone.utc).replace(microsecond=0).isoformat()
def json_dumps(obj: Any) -> str:
return json.dumps(obj, ensure_ascii=False, separators=(",", ":"))
def clamp_text(s: str, max_len: int = 6000) -> str:
if len(s) <= max_len:
return s
return s[: max(0, max_len - 3)] + "..."
# ---------------------------
# LLM backends
# ---------------------------
class LLM:
def complete(self, prompt: str, max_tokens: int = 800) -> str:
raise NotImplementedError
class HFInferenceLLM(LLM):
"""Hugging Face text‑generation inference. Expects env HUGGINGFACE_API_TOKEN and HUGGINGFACE_MODEL."""
def __init__(self, model: Optional[str] = None, timeout: int = 60):
self.token = os.getenv("HUGGINGFACE_API_TOKEN")
self.model = model or os.getenv("HUGGINGFACE_MODEL", "gpt2")
self.timeout = timeout
self.endpoint = f"https://api-inference.huggingface.co/models/{self.model}"
def complete(self, prompt: str, max_tokens: int = 800) -> str:
if not self.token:
raise RuntimeError("HUGGINGFACE_API_TOKEN not set")
headers = {"Authorization": f"Bearer {self.token}", "Accept": "application/json"}
payload = {"inputs": prompt, "parameters": {"max_new_tokens": max_tokens, "return_full_text": False}}
r = requests.post(self.endpoint, headers=headers, json=payload, timeout=self.timeout)
r.raise_for_status()
data = r.json()
# Response shape can vary; normalize
if isinstance(data, list) and data and "generated_text" in data[0]:
return str(data[0]["generated_text"]).strip()
if isinstance(data, dict) and "generated_text" in data:
return str(data["generated_text"]).strip()
# Fallback parsing
return json_dumps(data)
class OpenAILLM(LLM):
"""OpenAI responses via /v1/chat/completions. Requires OPENAI_API_KEY and OPENAI_MODEL."""
def __init__(self, model: Optional[str] = None, timeout: int = 60):
self.key = os.getenv("OPENAI_API_KEY")
self.model = model or os.getenv("OPENAI_MODEL", "gpt-4o-mini")
self.timeout = timeout
self.url = os.getenv("OPENAI_BASE_URL", "https://api.openai.com/v1/chat/completions")
def complete(self, prompt: str, max_tokens: int = 800) -> str:
if not self.key:
raise RuntimeError("OPENAI_API_KEY not set")
headers = {"Authorization": f"Bearer {self.key}", "Content-Type": "application/json"}
payload = {
"model": self.model,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.2,
"max_tokens": max_tokens,
}
r = requests.post(self.url, headers=headers, json=payload, timeout=self.timeout)
r.raise_for_status()
data = r.json()
return data["choices"][0]["message"]["content"].strip()
class GenericHTTPJSONLLM(LLM):
"""POSTs to LLM_ENDPOINT with JSON {prompt,max_tokens}. Expects plain text in response body or JSON {text:...}."""
def __init__(self, endpoint: Optional[str] = None, timeout: int = 60):
self.endpoint = endpoint or os.getenv("LLM_ENDPOINT")
self.timeout = timeout
def complete(self, prompt: str, max_tokens: int = 800) -> str:
if not self.endpoint:
raise RuntimeError("LLM_ENDPOINT not set")
r = requests.post(self.endpoint, json={"prompt": prompt, "max_tokens": max_tokens}, timeout=self.timeout)
r.raise_for_status()
try:
data = r.json()
return str(data.get("text") or data.get("output") or data).strip()
except Exception:
return r.text.strip()
class RuleBasedLLM(LLM):
"""Offline, deterministic fallback. Produces concise templates to keep the pipeline functional without keys."""
def complete(self, prompt: str, max_tokens: int = 800) -> str:
# Very small heuristics to keep output useful and testable
if "Generate one viral content idea" in prompt:
return "AI Side‑Hustles in 2025: 11 Practical Plays That Actually Work"
if "You are researching" in prompt:
topic = re.search(r"researching:\s*(.+?)\.\s*Summarize", prompt)
t = topic.group(1) if topic else "the topic"
return (
f"- Definition and scope of {t}\n"
f"- 2024–2025 trendline and adoption\n"
f"- 3 data points with sources\n"
f"- Risks, regulation, and future outlook"
)
if "Evaluate content quality" in prompt:
return json_dumps({
"per_criterion": {
"engagement": 8, "accuracy": 7, "originality": 7,
"emotion": 7, "readability": 8, "headline": 7,
},
"overall": 7.5,
"improvements": [
"Tighten hook with concrete stat",
"Add one contrarian insight",
"Replace generic CTA with a next‑step checklist",
],
})
if "Improve the content" in prompt:
return "[Improved] " + clamp_text(prompt.split("Content:", 1)[-1].strip())
if "Format the content for publication" in prompt:
return (
"SEO Title: Practical AI Side‑Hustles for 2025\n"
"Meta: A concise guide with data, risks, and an action checklist.\n"
"\n## Introduction\n...\n\n## CTA\nGrab the checklist."
)
if "Prepare publication package" in prompt:
now = utc_now_iso()
return json_dumps({
"title": "Practical AI Side‑Hustles for 2025",
"summary": "Concise, data‑guided ideas with risks and a checklist.",
"tags": ["AI", "side‑hustle", "2025"],
"canonical": "",
"published_at": now,
"body": "...",
})
# Default short echo
return clamp_text("[draft] " + prompt[-max_tokens:])
def build_llm() -> LLM:
# Order of preference: explicit endpoint, OpenAI, HF, fallback
try:
if os.getenv("LLM_ENDPOINT"):
logger.info("Using GenericHTTPJSONLLM")
return GenericHTTPJSONLLM()
if os.getenv("OPENAI_API_KEY"):
logger.info("Using OpenAILLM")
return OpenAILLM()
if os.getenv("HUGGINGFACE_API_TOKEN"):
logger.info("Using HFInferenceLLM")
return HFInferenceLLM()
except Exception as e:
logger.warning("LLM backend init failed, falling back: %s", e)
logger.info("Using RuleBasedLLM fallback")
return RuleBasedLLM()
# ---------------------------
# Research utilities
# ---------------------------
def ddg_search_snippets(query: str, limit: int = 5, timeout: int = 15) -> List[Dict[str, str]]:
"""Very light HTML scrape of DuckDuckGo HTML to avoid heavy APIs. Returns [{title,url,snippet}]"""
try:
url = "https://html.duckduckgo.com/html/"
r = requests.post(url, data={"q": query}, timeout=timeout, headers={"User-Agent": "agent/1.0"})
r.raise_for_status()
html = r.text
# naive parsing
results = []
for m in re.finditer(r'<a[^>]+class="result__a"[^>]*href=\"([^\"]+)\"[^>]*>(.*?)</a>', html):
link = m.group(1)
title = re.sub("<.*?>", "", m.group(2))
results.append({"title": title, "url": link, "snippet": ""})
if len(results) >= limit:
break
return results
except Exception as e:
logger.warning("ddg_search_snippets failed: %s", e)
return []
def wikipedia_summary(topic: str, timeout: int = 15) -> Optional[str]:
try:
api = "https://en.wikipedia.org/api/rest_v1/page/summary/" + requests.utils.quote(topic)
r = requests.get(api, timeout=timeout, headers={"User-Agent": "agent/1.0"})
if r.status_code == 200:
data = r.json()
return data.get("extract")
except Exception as e:
logger.warning("wikipedia_summary failed: %s", e)
return None
# ---------------------------
# Tools
# ---------------------------
@dataclass
class AgentHistory:
items: List[str] = field(default_factory=list)
def add(self, line: str) -> None:
self.items.append(line)
def render(self, max_len: int = 4000) -> str:
text = "\n".join(self.items)
return clamp_text(text, max_len)
@dataclass
class AgentConfig:
seed: int = 42
max_loops: int = 8
max_tokens: int = 800
log_jsonl: Optional[str] = os.getenv("AGENT_LOG_JSONL")
class ViralAgent:
ALLOWED_TOOLS = {
"GENERATE_IDEA",
"RESEARCH",
"GENERATE_CONTENT",
"SELF_EVALUATE",
"IMPROVE_CONTENT",
"FORMAT_CONTENT",
"PUBLISH",
"COMPLETE",
}
def __init__(self, llm: Optional[LLM] = None, cfg: Optional[AgentConfig] = None):
self.llm = llm or build_llm()
self.cfg = cfg or AgentConfig()
random.seed(self.cfg.seed)
self.history = AgentHistory()
self.session_id = uuid.uuid4().hex[:8]
logger.info("session=%s seed=%s", self.session_id, self.cfg.seed)
# -------- action loop --------
ACTION_RE = re.compile(r"^\s*action:\s*([A-Z_]+)\s*\naction_input=(.*)", re.S)
def run(self, task: str, purpose: str = "Generate viral content") -> Dict[str, Any]:
self.history.add(f"task: {task}")
context = PREFIX + f"Current Date/Time: {utc_now_iso()}\nPurpose: {purpose}\n"
for step in range(1, self.cfg.max_loops + 1):
prompt = (
f"{context}\nHistory:\n{self.history.render()}\n\n"
"Decide next step. Output exactly two lines:\n"
"action: <TOOL>\n"
"action_input=<TEXT>\n"
)
raw = self.llm.complete(prompt, max_tokens=self.cfg.max_tokens)
tool, payload = self._parse_action(raw)
logger.info("step=%s tool=%s", step, tool)
obs = self._dispatch(tool, payload, task)
self.history.add(f"observation: {clamp_text(obs, 800)}")
if tool == "COMPLETE":
return {"status": "ok", "session": self.session_id, "history": self.history.items}
return {"status": "max_loops", "session": self.session_id, "history": self.history.items}
# -------- parsing and dispatch --------
def _parse_action(self, text: str) -> Tuple[str, str]:
m = self.ACTION_RE.search(text or "")
if not m:
logger.warning("action parse failed; default to GENERATE_IDEA")
return "GENERATE_IDEA", "general tech trends 2025"
tool = m.group(1).strip().upper()
payload = m.group(2).strip()
if tool not in self.ALLOWED_TOOLS:
logger.warning("tool not allowed: %s", tool)
tool = "GENERATE_IDEA"
# guard payload
payload = clamp_text(payload, 4000)
return tool, payload
def _dispatch(self, tool: str, payload: str, task: str) -> str:
if tool == "GENERATE_IDEA":
idea = self.generate_idea(task, payload)
self.history.add(f"thought: generated idea -> {idea}")
return idea
if tool == "RESEARCH":
notes = self.research(payload or task)
self.history.add("thought: researched topic")
return notes
if tool == "GENERATE_CONTENT":
fmt = self._guess_format(payload)
notes = self._latest_research() or "key facts unavailable"
content = self.generate_content(task, fmt, notes)
self.history.add("thought: drafted content")
return content
if tool == "SELF_EVALUATE":
content = self._latest_content() or payload
return self.evaluate(content)
if tool == "IMPROVE_CONTENT":
content, feedback = self._split_two(payload)
improved = self.improve(content, feedback)
self.history.add("thought: improved content")
return improved
if tool == "FORMAT_CONTENT":
return self.format_content(payload)
if tool == "PUBLISH":
return self.publish(payload)
if tool == "COMPLETE":
return "done"
return "noop"
# -------- tool implementations --------
def generate_idea(self, topic: str, description: str) -> str:
p = IDEA_GENERATOR_PROMPT.format(topic=topic or description, history=self.history.render())
return self.llm.complete(p, max_tokens=120)
def research(self, topic: str) -> str:
topic = topic or "general topic"
bullets = []
# Try Wikipedia summary
s = wikipedia_summary(topic)
if s:
bullets.append("Wikipedia summary: " + s)
# Try DDG snippets
for r in ddg_search_snippets(topic, limit=5):
bullets.append(f"- {r['title']} — {r['url']}")
# LLM consolidation
prompt = RESEARCH_PROMPT.format(topic=topic)
llm_notes = self.llm.complete(prompt, max_tokens=200)
bullets.append(llm_notes)
notes = "\n".join(bullets)
# persist short log row
self._log_jsonl({"t": utc_now_iso(), "event": "research", "topic": topic, "notes": clamp_text(notes, 2000)})
return notes
def _guess_format(self, s: str) -> str:
s = s.lower()
for key in ["blog", "book", "review", "paper", "newsletter", "social"]:
if key in s:
return {
"blog": "blog_article",
"book": "book_chapter",
"review": "review_article",
"paper": "academic_paper",
"newsletter": "newsletter",
"social": "social_media_post",
}[key]
return "blog_article"
def generate_content(self, topic: str, format_type: str, research: str) -> str:
p = CONTENT_PROMPT.format(topic=topic, format_type=format_type, research=clamp_text(research, 2000))
content = self.llm.complete(p, max_tokens=700)
self._log_jsonl({"t": utc_now_iso(), "event": "content", "format": format_type, "len": len(content)})
return content
def evaluate(self, content: str) -> str:
p = EVALUATE_PROMPT.format(content=clamp_text(content, 2500))
out = self.llm.complete(p, max_tokens=220)
# validate JSON when possible
try:
obj = json.loads(out)
if isinstance(obj, dict):
out = json_dumps(obj)
except Exception:
pass
self._log_jsonl({"t": utc_now_iso(), "event": "evaluate"})
return out
def improve(self, content: str, feedback: str) -> str:
p = IMPROVE_PROMPT.format(content=clamp_text(content, 2500), feedback=clamp_text(feedback, 800))
out = self.llm.complete(p, max_tokens=700)
self._log_jsonl({"t": utc_now_iso(), "event": "improve"})
return out
def format_content(self, content: str) -> str:
p = FORMAT_PROMPT.format(content=clamp_text(content, 2500))
out = self.llm.complete(p, max_tokens=300)
self._log_jsonl({"t": utc_now_iso(), "event": "format"})
return out
def publish(self, content: str) -> str:
p = PUBLISH_PROMPT.format(content=clamp_text(content, 2000))
out = self.llm.complete(p, max_tokens=220)
# ensure minimal JSON shape
try:
obj = json.loads(out)
if "published_at" not in obj:
obj["published_at"] = utc_now_iso()
out = json_dumps(obj)
except Exception:
# wrap as minimal manifest
out = json_dumps({"title": "Untitled", "summary": "", "tags": [], "canonical": "", "published_at": utc_now_iso(), "body": out})
self._log_jsonl({"t": utc_now_iso(), "event": "publish"})
return out
# -------- helpers --------
def _split_two(self, block: str) -> Tuple[str, str]:
parts = block.split("\n\n", 1)
if len(parts) == 2:
return parts[0].strip(), parts[1].strip()
return block, ""
def _latest_research(self) -> Optional[str]:
for line in reversed(self.history.items):
if line.startswith("observation:") and ("Wikipedia summary:" in line or line.strip().startswith("- ")):
return line.split("observation:", 1)[-1].strip()
return None
def _latest_content(self) -> Optional[str]:
for line in reversed(self.history.items):
if line.startswith("observation:") and len(line) > 30 and ("##" in line or "#" in line or "\n" in line):
return line.split("observation:", 1)[-1].strip()
return None
def _log_jsonl(self, row: Dict[str, Any]) -> None:
path = self.cfg.log_jsonl
if not path:
return
try:
with open(path, "a", encoding="utf-8") as f:
f.write(json_dumps(row) + "\n")
except Exception as e:
logger.warning("jsonl log failed: %s", e)
# ---------------------------
# CLI
# ---------------------------
def run_cli() -> None:
import argparse
parser = argparse.ArgumentParser(description="Viral content agent")
parser.add_argument("task", help="Task to execute, e.g., 'Write a blog about X'")
parser.add_argument("--purpose", default="Generate viral content")
parser.add_argument("--seed", type=int, default=int(os.getenv("AGENT_SEED", "42")))
parser.add_argument("--max-loops", type=int, default=int(os.getenv("AGENT_MAX_LOOPS", "6")))
parser.add_argument("--log-jsonl", default=os.getenv("AGENT_LOG_JSONL"))
args = parser.parse_args()
cfg = AgentConfig(seed=args.seed, max_loops=args.max_loops, log_jsonl=args.log_jsonl)
agent = ViralAgent(cfg=cfg)
result = agent.run(task=args.task, purpose=args.purpose)
print(json_dumps(result))
if __name__ == "__main__":
run_cli()
|