Update app.py
Browse files
app.py
CHANGED
|
@@ -4,39 +4,125 @@ import gradio as gr
|
|
| 4 |
from docling_core.types.doc import DoclingDocument
|
| 5 |
from docling_core.types.doc.document import DocTagsDocument
|
| 6 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 7 |
-
from transformers.image_utils import load_image
|
| 8 |
from pathlib import Path
|
| 9 |
import tempfile
|
|
|
|
| 10 |
import subprocess
|
| 11 |
import sys
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
"
|
|
|
|
|
|
|
| 17 |
try:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
# Load
|
| 30 |
-
|
| 31 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
| 32 |
-
"ibm-granite/granite-docling-258M",
|
| 33 |
-
dtype=torch.bfloat16,
|
| 34 |
-
attn_implementation="flash_attention_2",
|
| 35 |
-
).to(DEVICE)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Prepare messages
|
| 41 |
messages = [
|
| 42 |
{
|
|
@@ -51,12 +137,29 @@ def process_document(image, output_format="markdown"):
|
|
| 51 |
# Prepare inputs
|
| 52 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 53 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 54 |
-
inputs = inputs.to(DEVICE)
|
| 55 |
|
| 56 |
-
#
|
|
|
|
|
|
|
|
|
|
| 57 |
with torch.no_grad():
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
| 60 |
prompt_length = inputs.input_ids.shape[1]
|
| 61 |
trimmed_generated_ids = generated_ids[:, prompt_length:]
|
| 62 |
doctags = processor.batch_decode(
|
|
@@ -64,6 +167,8 @@ def process_document(image, output_format="markdown"):
|
|
| 64 |
skip_special_tokens=False,
|
| 65 |
)[0].lstrip()
|
| 66 |
|
|
|
|
|
|
|
| 67 |
# Create Docling document
|
| 68 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
| 69 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
|
@@ -87,28 +192,55 @@ def process_document(image, output_format="markdown"):
|
|
| 87 |
return markdown_content, html_file, doctags
|
| 88 |
|
| 89 |
except Exception as e:
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
def clear_results():
|
| 93 |
"""Clear all outputs"""
|
| 94 |
-
return
|
| 95 |
|
|
|
|
| 96 |
with gr.Blocks(
|
| 97 |
title="Docling Document Converter",
|
| 98 |
theme=gr.themes.Soft(),
|
| 99 |
css="""
|
| 100 |
-
.header {
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
"""
|
| 103 |
) as demo:
|
| 104 |
gr.Markdown(
|
| 105 |
"""
|
| 106 |
-
# Docling Document Converter
|
| 107 |
-
Upload an image of a document page and convert it to structured markdown or HTML using the Granite-Docling model.
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
""",
|
| 113 |
elem_classes="header"
|
| 114 |
)
|
|
@@ -118,50 +250,67 @@ with gr.Blocks(
|
|
| 118 |
image_input = gr.Image(
|
| 119 |
label="Upload Document Image",
|
| 120 |
type="pil",
|
| 121 |
-
height=
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
show_share_button=True
|
| 125 |
)
|
| 126 |
|
| 127 |
format_choice = gr.Radio(
|
| 128 |
choices=["markdown", "html", "both"],
|
| 129 |
value="markdown",
|
| 130 |
label="Output Format",
|
|
|
|
| 131 |
elem_classes="format-selector"
|
| 132 |
)
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
)
|
| 144 |
|
| 145 |
with gr.Column(scale=2):
|
| 146 |
-
with gr.Tab("Markdown Output"):
|
| 147 |
markdown_output = gr.Markdown(
|
|
|
|
| 148 |
label="Structured Markdown",
|
| 149 |
show_copy_button=True,
|
| 150 |
-
|
| 151 |
)
|
| 152 |
|
| 153 |
-
with gr.Tab("HTML Output"):
|
| 154 |
html_output = gr.File(
|
| 155 |
label="Download HTML File",
|
| 156 |
file_types=[".html"],
|
| 157 |
-
|
| 158 |
)
|
| 159 |
|
| 160 |
-
with gr.Tab("Raw DocTags"):
|
| 161 |
doctags_output = gr.Textbox(
|
| 162 |
label="Raw DocTags Output",
|
| 163 |
lines=15,
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
|
| 167 |
# Event handlers
|
|
@@ -177,14 +326,28 @@ with gr.Blocks(
|
|
| 177 |
outputs=[markdown_output, html_output, doctags_output]
|
| 178 |
)
|
| 179 |
|
| 180 |
-
#
|
| 181 |
-
gr.
|
| 182 |
-
|
| 183 |
-
[
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
)
|
| 188 |
|
|
|
|
| 189 |
if __name__ == "__main__":
|
| 190 |
demo.launch()
|
|
|
|
| 4 |
from docling_core.types.doc import DoclingDocument
|
| 5 |
from docling_core.types.doc.document import DocTagsDocument
|
| 6 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
import tempfile
|
| 9 |
+
import os
|
| 10 |
import subprocess
|
| 11 |
import sys
|
| 12 |
|
| 13 |
+
# Try to install flash-attn at startup if not available
|
| 14 |
+
try:
|
| 15 |
+
import flash_attn
|
| 16 |
+
print("Flash attention already installed")
|
| 17 |
+
except ImportError:
|
| 18 |
+
print("Flash attention not found, attempting to install...")
|
| 19 |
try:
|
| 20 |
+
subprocess.run(
|
| 21 |
+
[sys.executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"],
|
| 22 |
+
check=True,
|
| 23 |
+
capture_output=True,
|
| 24 |
+
text=True
|
| 25 |
+
)
|
| 26 |
+
print("Flash attention installed successfully")
|
| 27 |
+
except subprocess.CalledProcessError as e:
|
| 28 |
+
print(f"Could not install flash attention: {e}")
|
| 29 |
+
print("Continuing without flash attention...")
|
| 30 |
|
| 31 |
+
# Global variables for model and processor
|
| 32 |
+
model = None
|
| 33 |
+
processor = None
|
| 34 |
+
model_loaded = False
|
| 35 |
|
| 36 |
+
def load_model():
|
| 37 |
+
"""Load the model and processor"""
|
| 38 |
+
global model, processor, model_loaded
|
| 39 |
+
|
| 40 |
+
if not model_loaded:
|
| 41 |
+
try:
|
| 42 |
+
# Load processor
|
| 43 |
+
processor = AutoProcessor.from_pretrained("ibm-granite/granite-docling-258M")
|
| 44 |
+
|
| 45 |
+
# Determine device
|
| 46 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 47 |
+
|
| 48 |
+
# Check if flash attention is available
|
| 49 |
+
attn_implementation = "eager" # default
|
| 50 |
+
if device == "cuda":
|
| 51 |
+
try:
|
| 52 |
+
import flash_attn
|
| 53 |
+
attn_implementation = "flash_attention_2"
|
| 54 |
+
print("Using Flash Attention 2")
|
| 55 |
+
except ImportError:
|
| 56 |
+
print("Flash attention not available, using eager attention")
|
| 57 |
+
attn_implementation = "eager"
|
| 58 |
+
|
| 59 |
+
# Load model with appropriate settings
|
| 60 |
+
print(f"Loading model on {device} with {attn_implementation}...")
|
| 61 |
+
|
| 62 |
+
if device == "cuda":
|
| 63 |
+
# For GPU, use bfloat16 for better performance
|
| 64 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 65 |
+
"ibm-granite/granite-docling-258M",
|
| 66 |
+
torch_dtype=torch.bfloat16,
|
| 67 |
+
attn_implementation=attn_implementation,
|
| 68 |
+
device_map="auto",
|
| 69 |
+
trust_remote_code=True
|
| 70 |
+
)
|
| 71 |
+
else:
|
| 72 |
+
# For CPU, use float32
|
| 73 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 74 |
+
"ibm-granite/granite-docling-258M",
|
| 75 |
+
torch_dtype=torch.float32,
|
| 76 |
+
attn_implementation="eager",
|
| 77 |
+
trust_remote_code=True
|
| 78 |
+
)
|
| 79 |
+
model = model.to(device)
|
| 80 |
+
|
| 81 |
+
model_loaded = True
|
| 82 |
+
print(f"Model loaded successfully on {device}")
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Error loading model: {e}")
|
| 86 |
+
# Fallback loading without special attention
|
| 87 |
+
try:
|
| 88 |
+
processor = AutoProcessor.from_pretrained("ibm-granite/granite-docling-258M")
|
| 89 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 90 |
+
"ibm-granite/granite-docling-258M",
|
| 91 |
+
torch_dtype=torch.float32,
|
| 92 |
+
trust_remote_code=True
|
| 93 |
+
)
|
| 94 |
+
device = "cpu"
|
| 95 |
+
model = model.to(device)
|
| 96 |
+
model_loaded = True
|
| 97 |
+
print("Model loaded on CPU as fallback")
|
| 98 |
+
except Exception as fallback_error:
|
| 99 |
+
print(f"Fallback loading also failed: {fallback_error}")
|
| 100 |
+
raise
|
| 101 |
|
| 102 |
+
# Load model at startup
|
| 103 |
+
load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
@spaces.GPU(duration=120)
|
| 106 |
+
def process_document_gpu(image, output_format="markdown"):
|
| 107 |
+
"""Process uploaded image to generate Docling document - GPU version"""
|
| 108 |
+
global model, processor
|
| 109 |
+
|
| 110 |
try:
|
| 111 |
+
# Ensure model is loaded
|
| 112 |
+
if not model_loaded:
|
| 113 |
+
load_model()
|
| 114 |
+
|
| 115 |
+
# Move model to GPU if available (for ZeroGPU)
|
| 116 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 117 |
+
|
| 118 |
+
# For ZeroGPU, the model might need to be moved to GPU
|
| 119 |
+
if device == "cuda":
|
| 120 |
+
# Only move if not already on cuda
|
| 121 |
+
if hasattr(model, 'device') and model.device.type != 'cuda':
|
| 122 |
+
model = model.to(device)
|
| 123 |
+
|
| 124 |
+
print(f"Processing on {device}")
|
| 125 |
+
|
| 126 |
# Prepare messages
|
| 127 |
messages = [
|
| 128 |
{
|
|
|
|
| 137 |
# Prepare inputs
|
| 138 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 139 |
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
|
|
|
| 140 |
|
| 141 |
+
# Move inputs to the same device as the model
|
| 142 |
+
inputs = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
| 143 |
+
|
| 144 |
+
# Generate outputs with memory-efficient settings
|
| 145 |
with torch.no_grad():
|
| 146 |
+
if device == "cuda":
|
| 147 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 148 |
+
generated_ids = model.generate(
|
| 149 |
+
**inputs,
|
| 150 |
+
max_new_tokens=8192,
|
| 151 |
+
do_sample=False,
|
| 152 |
+
temperature=None,
|
| 153 |
+
top_p=None
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
generated_ids = model.generate(
|
| 157 |
+
**inputs,
|
| 158 |
+
max_new_tokens=8192,
|
| 159 |
+
do_sample=False
|
| 160 |
+
)
|
| 161 |
|
| 162 |
+
# Process the output
|
| 163 |
prompt_length = inputs.input_ids.shape[1]
|
| 164 |
trimmed_generated_ids = generated_ids[:, prompt_length:]
|
| 165 |
doctags = processor.batch_decode(
|
|
|
|
| 167 |
skip_special_tokens=False,
|
| 168 |
)[0].lstrip()
|
| 169 |
|
| 170 |
+
print(f"Generated {len(doctags)} characters of DocTags")
|
| 171 |
+
|
| 172 |
# Create Docling document
|
| 173 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
| 174 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
|
|
|
| 192 |
return markdown_content, html_file, doctags
|
| 193 |
|
| 194 |
except Exception as e:
|
| 195 |
+
error_msg = f"Error processing document: {str(e)}"
|
| 196 |
+
print(error_msg)
|
| 197 |
+
import traceback
|
| 198 |
+
print(traceback.format_exc())
|
| 199 |
+
return error_msg, None, None
|
| 200 |
+
|
| 201 |
+
def process_document(image, output_format="markdown"):
|
| 202 |
+
"""Wrapper function to handle processing"""
|
| 203 |
+
if image is None:
|
| 204 |
+
return "Please upload an image first.", None, None
|
| 205 |
+
|
| 206 |
+
# Call the GPU-decorated function
|
| 207 |
+
return process_document_gpu(image, output_format)
|
| 208 |
|
| 209 |
def clear_results():
|
| 210 |
"""Clear all outputs"""
|
| 211 |
+
return "", None, ""
|
| 212 |
|
| 213 |
+
# Create Gradio interface
|
| 214 |
with gr.Blocks(
|
| 215 |
title="Docling Document Converter",
|
| 216 |
theme=gr.themes.Soft(),
|
| 217 |
css="""
|
| 218 |
+
.header {
|
| 219 |
+
text-align: center;
|
| 220 |
+
margin-bottom: 2rem;
|
| 221 |
+
}
|
| 222 |
+
.format-selector {
|
| 223 |
+
margin-top: 1rem;
|
| 224 |
+
}
|
| 225 |
+
.markdown-output {
|
| 226 |
+
max-height: 600px;
|
| 227 |
+
overflow-y: auto;
|
| 228 |
+
padding: 10px;
|
| 229 |
+
border: 1px solid #ddd;
|
| 230 |
+
border-radius: 5px;
|
| 231 |
+
background-color: #f9f9f9;
|
| 232 |
+
}
|
| 233 |
"""
|
| 234 |
) as demo:
|
| 235 |
gr.Markdown(
|
| 236 |
"""
|
| 237 |
+
# π Docling Document Converter
|
|
|
|
| 238 |
|
| 239 |
+
Upload an image of a document page and convert it to structured markdown or HTML using the IBM Granite-Docling model.
|
| 240 |
+
|
| 241 |
+
This space uses ZeroGPU for efficient processing. The model converts document images into structured formats while preserving layout and formatting.
|
| 242 |
+
|
| 243 |
+
---
|
| 244 |
""",
|
| 245 |
elem_classes="header"
|
| 246 |
)
|
|
|
|
| 250 |
image_input = gr.Image(
|
| 251 |
label="Upload Document Image",
|
| 252 |
type="pil",
|
| 253 |
+
height=400,
|
| 254 |
+
sources=["upload", "clipboard"],
|
| 255 |
+
show_label=True
|
|
|
|
| 256 |
)
|
| 257 |
|
| 258 |
format_choice = gr.Radio(
|
| 259 |
choices=["markdown", "html", "both"],
|
| 260 |
value="markdown",
|
| 261 |
label="Output Format",
|
| 262 |
+
info="Choose the output format for the converted document",
|
| 263 |
elem_classes="format-selector"
|
| 264 |
)
|
| 265 |
|
| 266 |
+
with gr.Row():
|
| 267 |
+
process_btn = gr.Button(
|
| 268 |
+
"π Convert Document",
|
| 269 |
+
variant="primary",
|
| 270 |
+
size="lg",
|
| 271 |
+
scale=2
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
clear_btn = gr.Button(
|
| 275 |
+
"ποΈ Clear",
|
| 276 |
+
variant="secondary",
|
| 277 |
+
size="lg",
|
| 278 |
+
scale=1
|
| 279 |
+
)
|
| 280 |
|
| 281 |
+
# Status indicator
|
| 282 |
+
gr.Markdown(
|
| 283 |
+
"""
|
| 284 |
+
### βΉοΈ Tips:
|
| 285 |
+
- Upload clear, high-resolution images for best results
|
| 286 |
+
- The model works best with text documents, tables, and structured content
|
| 287 |
+
- Processing may take a few moments depending on document complexity
|
| 288 |
+
"""
|
| 289 |
)
|
| 290 |
|
| 291 |
with gr.Column(scale=2):
|
| 292 |
+
with gr.Tab("π Markdown Output"):
|
| 293 |
markdown_output = gr.Markdown(
|
| 294 |
+
value="",
|
| 295 |
label="Structured Markdown",
|
| 296 |
show_copy_button=True,
|
| 297 |
+
elem_classes="markdown-output"
|
| 298 |
)
|
| 299 |
|
| 300 |
+
with gr.Tab("π HTML Output"):
|
| 301 |
html_output = gr.File(
|
| 302 |
label="Download HTML File",
|
| 303 |
file_types=[".html"],
|
| 304 |
+
visible=True
|
| 305 |
)
|
| 306 |
|
| 307 |
+
with gr.Tab("π·οΈ Raw DocTags"):
|
| 308 |
doctags_output = gr.Textbox(
|
| 309 |
label="Raw DocTags Output",
|
| 310 |
lines=15,
|
| 311 |
+
max_lines=30,
|
| 312 |
+
show_copy_button=True,
|
| 313 |
+
placeholder="Raw DocTags will appear here after processing..."
|
| 314 |
)
|
| 315 |
|
| 316 |
# Event handlers
|
|
|
|
| 326 |
outputs=[markdown_output, html_output, doctags_output]
|
| 327 |
)
|
| 328 |
|
| 329 |
+
# Examples section
|
| 330 |
+
with gr.Accordion("π Example Documents", open=False):
|
| 331 |
+
gr.Examples(
|
| 332 |
+
examples=[
|
| 333 |
+
["https://huggingface.co/ibm-granite/granite-docling-258M/resolve/main/assets/new_arxiv.png"],
|
| 334 |
+
],
|
| 335 |
+
inputs=[image_input],
|
| 336 |
+
label="Click to load an example document",
|
| 337 |
+
cache_examples=False
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Footer
|
| 341 |
+
gr.Markdown(
|
| 342 |
+
"""
|
| 343 |
+
---
|
| 344 |
+
<div style="text-align: center; margin-top: 2rem;">
|
| 345 |
+
<p>Powered by <a href="https://huggingface.co/ibm-granite/granite-docling-258M" target="_blank">IBM Granite-Docling-258M</a></p>
|
| 346 |
+
<p>Built with β€οΈ using Gradio and Hugging Face Spaces</p>
|
| 347 |
+
</div>
|
| 348 |
+
"""
|
| 349 |
)
|
| 350 |
|
| 351 |
+
# Launch the app
|
| 352 |
if __name__ == "__main__":
|
| 353 |
demo.launch()
|