fix
Browse files- config.json +2 -2
- experiment_presets/example_script.json +1 -1
- modules/memory.py +1 -1
config.json
CHANGED
|
@@ -2,12 +2,12 @@
|
|
| 2 |
"role_llm_name": "gpt-4o-mini",
|
| 3 |
"world_llm_name": "gpt-4o-mini",
|
| 4 |
"embedding_model_name":"bge-m3",
|
| 5 |
-
"preset_path":"./experiment_presets/
|
| 6 |
"if_save": 0,
|
| 7 |
"scene_mode": 1,
|
| 8 |
"rounds": 10,
|
| 9 |
"save_dir": "",
|
| 10 |
-
"mode": "
|
| 11 |
|
| 12 |
"OPENAI_API_KEY":"",
|
| 13 |
"GEMINI_API_KEY":"",
|
|
|
|
| 2 |
"role_llm_name": "gpt-4o-mini",
|
| 3 |
"world_llm_name": "gpt-4o-mini",
|
| 4 |
"embedding_model_name":"bge-m3",
|
| 5 |
+
"preset_path":"./experiment_presets/example_free.json",
|
| 6 |
"if_save": 0,
|
| 7 |
"scene_mode": 1,
|
| 8 |
"rounds": 10,
|
| 9 |
"save_dir": "",
|
| 10 |
+
"mode": "free",
|
| 11 |
|
| 12 |
"OPENAI_API_KEY":"",
|
| 13 |
"GEMINI_API_KEY":"",
|
experiment_presets/example_script.json
CHANGED
|
@@ -7,7 +7,7 @@
|
|
| 7 |
"role_agent_codes":["Lacia-en","Trek-en"],
|
| 8 |
"intervention":"",
|
| 9 |
"script":"",
|
| 10 |
-
"source":"
|
| 11 |
"language":"en"
|
| 12 |
|
| 13 |
}
|
|
|
|
| 7 |
"role_agent_codes":["Lacia-en","Trek-en"],
|
| 8 |
"intervention":"",
|
| 9 |
"script":"",
|
| 10 |
+
"source":"example_world",
|
| 11 |
"language":"en"
|
| 12 |
|
| 13 |
}
|
modules/memory.py
CHANGED
|
@@ -17,7 +17,7 @@ def build_role_agent_memory(type = "ga",**kwargs):
|
|
| 17 |
embedding_name = kwargs["embedding_name"]
|
| 18 |
db_name = kwargs["db_name"]
|
| 19 |
language = kwargs["language"] if "language" in kwargs else ""
|
| 20 |
-
embedding_model =
|
| 21 |
index = faiss.IndexFlatL2(len(embedding_model.embed_query("hello world")))
|
| 22 |
vectorstore = FAISS(
|
| 23 |
embedding_function=embedding_model,
|
|
|
|
| 17 |
embedding_name = kwargs["embedding_name"]
|
| 18 |
db_name = kwargs["db_name"]
|
| 19 |
language = kwargs["language"] if "language" in kwargs else ""
|
| 20 |
+
embedding_model = get_embedding_model(embedding_name, language=language)
|
| 21 |
index = faiss.IndexFlatL2(len(embedding_model.embed_query("hello world")))
|
| 22 |
vectorstore = FAISS(
|
| 23 |
embedding_function=embedding_model,
|