Upload 22 files
Browse files- css/styles.css +79 -3
- index.html +22 -14
- js/complete-drag-fix.js +155 -3
- js/layer-editor.js +123 -13
- js/main.js +335 -150
css/styles.css
CHANGED
|
@@ -34,6 +34,12 @@
|
|
| 34 |
--node-glow: 0 0 15px rgba(255, 255, 255, 0.8);
|
| 35 |
--linear-node-color-1: #1abc9c;
|
| 36 |
--linear-node-color-2: #16a085;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
}
|
| 38 |
|
| 39 |
body {
|
|
@@ -719,10 +725,10 @@ footer p {
|
|
| 719 |
margin-bottom: 1rem;
|
| 720 |
}
|
| 721 |
|
| 722 |
-
.setting-label {
|
| 723 |
font-size: 0.9rem;
|
| 724 |
color: #666;
|
| 725 |
-
margin-bottom: 0.
|
| 726 |
display: block;
|
| 727 |
}
|
| 728 |
|
|
@@ -733,6 +739,7 @@ footer p {
|
|
| 733 |
border-radius: 5px;
|
| 734 |
background: #ddd;
|
| 735 |
outline: none;
|
|
|
|
| 736 |
}
|
| 737 |
|
| 738 |
.range-slider::-webkit-slider-thumb {
|
|
@@ -751,7 +758,24 @@ footer p {
|
|
| 751 |
box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.3);
|
| 752 |
}
|
| 753 |
|
| 754 |
-
.range-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 755 |
font-size: 0.9rem;
|
| 756 |
color: var(--primary-color);
|
| 757 |
font-weight: 600;
|
|
@@ -818,6 +842,25 @@ select {
|
|
| 818 |
margin-bottom: 1.5rem;
|
| 819 |
}
|
| 820 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 821 |
.layer-weights {
|
| 822 |
display: flex;
|
| 823 |
justify-content: center;
|
|
@@ -2038,4 +2081,37 @@ select {
|
|
| 2038 |
#stats-container {
|
| 2039 |
grid-template-columns: 1fr;
|
| 2040 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2041 |
}
|
|
|
|
| 34 |
--node-glow: 0 0 15px rgba(255, 255, 255, 0.8);
|
| 35 |
--linear-node-color-1: #1abc9c;
|
| 36 |
--linear-node-color-2: #16a085;
|
| 37 |
+
--lstm-node-color-1: #9c88ff;
|
| 38 |
+
--lstm-node-color-2: #8c7ae6;
|
| 39 |
+
--rnn-node-color-1: #00cec9;
|
| 40 |
+
--rnn-node-color-2: #00b894;
|
| 41 |
+
--gru-node-color-1: #fd79a8;
|
| 42 |
+
--gru-node-color-2: #e84393;
|
| 43 |
}
|
| 44 |
|
| 45 |
body {
|
|
|
|
| 725 |
margin-bottom: 1rem;
|
| 726 |
}
|
| 727 |
|
| 728 |
+
.setting-group label {
|
| 729 |
font-size: 0.9rem;
|
| 730 |
color: #666;
|
| 731 |
+
margin-bottom: 0.5rem;
|
| 732 |
display: block;
|
| 733 |
}
|
| 734 |
|
|
|
|
| 739 |
border-radius: 5px;
|
| 740 |
background: #ddd;
|
| 741 |
outline: none;
|
| 742 |
+
margin: 10px 0;
|
| 743 |
}
|
| 744 |
|
| 745 |
.range-slider::-webkit-slider-thumb {
|
|
|
|
| 758 |
box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.3);
|
| 759 |
}
|
| 760 |
|
| 761 |
+
.range-slider::-moz-range-thumb {
|
| 762 |
+
width: 18px;
|
| 763 |
+
height: 18px;
|
| 764 |
+
border-radius: 50%;
|
| 765 |
+
background: var(--primary-color);
|
| 766 |
+
cursor: pointer;
|
| 767 |
+
transition: all 0.2s ease;
|
| 768 |
+
border: none;
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
.range-slider::-moz-range-thumb:hover {
|
| 772 |
+
background: #2980b9;
|
| 773 |
+
box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.3);
|
| 774 |
+
}
|
| 775 |
+
|
| 776 |
+
.setting-value {
|
| 777 |
+
display: flex;
|
| 778 |
+
justify-content: flex-end;
|
| 779 |
font-size: 0.9rem;
|
| 780 |
color: var(--primary-color);
|
| 781 |
font-weight: 600;
|
|
|
|
| 842 |
margin-bottom: 1.5rem;
|
| 843 |
}
|
| 844 |
|
| 845 |
+
.activation-graph {
|
| 846 |
+
background: #f8f9fa;
|
| 847 |
+
border-radius: var(--border-radius);
|
| 848 |
+
padding: 1rem;
|
| 849 |
+
margin-bottom: 1.5rem;
|
| 850 |
+
width: 100%;
|
| 851 |
+
height: 150px;
|
| 852 |
+
position: relative;
|
| 853 |
+
overflow: hidden;
|
| 854 |
+
}
|
| 855 |
+
|
| 856 |
+
.activation-curve {
|
| 857 |
+
width: 100%;
|
| 858 |
+
height: 100%;
|
| 859 |
+
display: block;
|
| 860 |
+
background-color: #f8f9fa;
|
| 861 |
+
border-radius: var(--border-radius);
|
| 862 |
+
}
|
| 863 |
+
|
| 864 |
.layer-weights {
|
| 865 |
display: flex;
|
| 866 |
justify-content: center;
|
|
|
|
| 2081 |
#stats-container {
|
| 2082 |
grid-template-columns: 1fr;
|
| 2083 |
}
|
| 2084 |
+
}
|
| 2085 |
+
|
| 2086 |
+
.lstm-node {
|
| 2087 |
+
background: linear-gradient(135deg, var(--lstm-node-color-1), var(--lstm-node-color-2));
|
| 2088 |
+
border: 2px solid var(--lstm-node-color-1);
|
| 2089 |
+
color: white;
|
| 2090 |
+
}
|
| 2091 |
+
|
| 2092 |
+
.rnn-node {
|
| 2093 |
+
background: linear-gradient(135deg, var(--rnn-node-color-1), var(--rnn-node-color-2));
|
| 2094 |
+
border: 2px solid var(--rnn-node-color-1);
|
| 2095 |
+
color: white;
|
| 2096 |
+
}
|
| 2097 |
+
|
| 2098 |
+
.gru-node {
|
| 2099 |
+
background: linear-gradient(135deg, var(--gru-node-color-1), var(--gru-node-color-2));
|
| 2100 |
+
border: 2px solid var(--gru-node-color-1);
|
| 2101 |
+
color: white;
|
| 2102 |
+
}
|
| 2103 |
+
|
| 2104 |
+
.canvas-node[data-type="lstm"] {
|
| 2105 |
+
background: linear-gradient(135deg, var(--lstm-node-color-1), var(--lstm-node-color-2), var(--lstm-node-color-1));
|
| 2106 |
+
border: 2px solid var(--lstm-node-color-1);
|
| 2107 |
+
}
|
| 2108 |
+
|
| 2109 |
+
.canvas-node[data-type="rnn"] {
|
| 2110 |
+
background: linear-gradient(135deg, var(--rnn-node-color-1), var(--rnn-node-color-2), var(--rnn-node-color-1));
|
| 2111 |
+
border: 2px solid var(--rnn-node-color-1);
|
| 2112 |
+
}
|
| 2113 |
+
|
| 2114 |
+
.canvas-node[data-type="gru"] {
|
| 2115 |
+
background: linear-gradient(135deg, var(--gru-node-color-1), var(--gru-node-color-2), var(--gru-node-color-1));
|
| 2116 |
+
border: 2px solid var(--gru-node-color-1);
|
| 2117 |
}
|
index.html
CHANGED
|
@@ -53,16 +53,15 @@
|
|
| 53 |
<div class="node-item" draggable="true" data-type="pool">
|
| 54 |
<div class="node pool-node">Pooling</div>
|
| 55 |
</div>
|
| 56 |
-
<div class="node-item" draggable="true" data-type="
|
| 57 |
-
<div class="node
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
</div>
|
| 59 |
-
</div>
|
| 60 |
-
|
| 61 |
-
<h3 class="section-title">Sample Data</h3>
|
| 62 |
-
<div class="sample-data">
|
| 63 |
-
<div class="sample-item" data-sample="1">5</div>
|
| 64 |
-
<div class="sample-item" data-sample="2">7</div>
|
| 65 |
-
<div class="sample-item" data-sample="3">3</div>
|
| 66 |
</div>
|
| 67 |
|
| 68 |
<div class="controls">
|
|
@@ -74,8 +73,10 @@
|
|
| 74 |
<div class="network-settings">
|
| 75 |
<div class="setting-group">
|
| 76 |
<label for="learning-rate">Learning Rate:</label>
|
| 77 |
-
<input type="range" id="learning-rate" min="0.001" max="1" step="0.001" value="0.1">
|
| 78 |
-
<
|
|
|
|
|
|
|
| 79 |
</div>
|
| 80 |
<div class="setting-group">
|
| 81 |
<label for="activation">Activation:</label>
|
|
@@ -85,6 +86,14 @@
|
|
| 85 |
<option value="tanh">Tanh</option>
|
| 86 |
</select>
|
| 87 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
</div>
|
| 89 |
</div>
|
| 90 |
|
|
@@ -432,9 +441,8 @@
|
|
| 432 |
<footer>
|
| 433 |
<p>Neural Network Playground - Learn and visualize neural networks interactively</p>
|
| 434 |
<div class="footer-links">
|
| 435 |
-
<a href="
|
| 436 |
-
<a href="
|
| 437 |
-
<a href="https://github.com/yourusername/neural-network-playground" target="_blank">GitHub</a>
|
| 438 |
</div>
|
| 439 |
</footer>
|
| 440 |
|
|
|
|
| 53 |
<div class="node-item" draggable="true" data-type="pool">
|
| 54 |
<div class="node pool-node">Pooling</div>
|
| 55 |
</div>
|
| 56 |
+
<div class="node-item" draggable="true" data-type="lstm">
|
| 57 |
+
<div class="node lstm-node">LSTM</div>
|
| 58 |
+
</div>
|
| 59 |
+
<div class="node-item" draggable="true" data-type="rnn">
|
| 60 |
+
<div class="node rnn-node">RNN</div>
|
| 61 |
+
</div>
|
| 62 |
+
<div class="node-item" draggable="true" data-type="gru">
|
| 63 |
+
<div class="node gru-node">GRU</div>
|
| 64 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
</div>
|
| 66 |
|
| 67 |
<div class="controls">
|
|
|
|
| 73 |
<div class="network-settings">
|
| 74 |
<div class="setting-group">
|
| 75 |
<label for="learning-rate">Learning Rate:</label>
|
| 76 |
+
<input type="range" id="learning-rate" class="range-slider" min="0.001" max="1" step="0.001" value="0.1">
|
| 77 |
+
<div class="setting-value">
|
| 78 |
+
<span id="learning-rate-value">0.1</span>
|
| 79 |
+
</div>
|
| 80 |
</div>
|
| 81 |
<div class="setting-group">
|
| 82 |
<label for="activation">Activation:</label>
|
|
|
|
| 86 |
<option value="tanh">Tanh</option>
|
| 87 |
</select>
|
| 88 |
</div>
|
| 89 |
+
<div class="setting-group">
|
| 90 |
+
<label for="optimizer">Optimizer:</label>
|
| 91 |
+
<select id="optimizer">
|
| 92 |
+
<option value="sgd">SGD</option>
|
| 93 |
+
<option value="adam">Adam</option>
|
| 94 |
+
<option value="rmsprop">RMSProp</option>
|
| 95 |
+
</select>
|
| 96 |
+
</div>
|
| 97 |
</div>
|
| 98 |
</div>
|
| 99 |
|
|
|
|
| 441 |
<footer>
|
| 442 |
<p>Neural Network Playground - Learn and visualize neural networks interactively</p>
|
| 443 |
<div class="footer-links">
|
| 444 |
+
<a href="https://x.com/Ameerazam18" id="about-link">Follow me on X</a>
|
| 445 |
+
<a href="https://github.com/Ameerazam08" target="_blank">GitHub</a>
|
|
|
|
| 446 |
</div>
|
| 447 |
</footer>
|
| 448 |
|
js/complete-drag-fix.js
CHANGED
|
@@ -196,12 +196,37 @@
|
|
| 196 |
};
|
| 197 |
break;
|
| 198 |
|
| 199 |
-
case '
|
| 200 |
nodeConfig = {
|
| 201 |
units: 64,
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
useBias: true,
|
| 204 |
-
outputShape: [
|
| 205 |
parameters: 0
|
| 206 |
};
|
| 207 |
break;
|
|
@@ -268,6 +293,24 @@
|
|
| 268 |
outputShape = 'Depends on input';
|
| 269 |
parameters = `Pool size: ${nodeConfig.poolSize.join('×')}\nStride: ${nodeConfig.strides.join('×')}\nPadding: ${nodeConfig.padding}`;
|
| 270 |
break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
default:
|
| 272 |
nodeName = 'Unknown Layer';
|
| 273 |
inputShape = 'N/A';
|
|
@@ -877,6 +920,115 @@
|
|
| 877 |
}
|
| 878 |
break;
|
| 879 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 880 |
case 'conv':
|
| 881 |
if (sourceConfig.outputShape && sourceConfig.outputShape.length >= 3) {
|
| 882 |
// Very explicit type conversion - ensure all values are numbers
|
|
|
|
| 196 |
};
|
| 197 |
break;
|
| 198 |
|
| 199 |
+
case 'lstm':
|
| 200 |
nodeConfig = {
|
| 201 |
units: 64,
|
| 202 |
+
returnSequences: true,
|
| 203 |
+
activation: 'tanh',
|
| 204 |
+
recurrentActivation: 'sigmoid',
|
| 205 |
+
useBias: true,
|
| 206 |
+
outputShape: ['?', 64],
|
| 207 |
+
parameters: 0
|
| 208 |
+
};
|
| 209 |
+
break;
|
| 210 |
+
|
| 211 |
+
case 'rnn':
|
| 212 |
+
nodeConfig = {
|
| 213 |
+
units: 32,
|
| 214 |
+
returnSequences: true,
|
| 215 |
+
activation: 'tanh',
|
| 216 |
+
useBias: true,
|
| 217 |
+
outputShape: ['?', 32],
|
| 218 |
+
parameters: 0
|
| 219 |
+
};
|
| 220 |
+
break;
|
| 221 |
+
|
| 222 |
+
case 'gru':
|
| 223 |
+
nodeConfig = {
|
| 224 |
+
units: 48,
|
| 225 |
+
returnSequences: true,
|
| 226 |
+
activation: 'tanh',
|
| 227 |
+
recurrentActivation: 'sigmoid',
|
| 228 |
useBias: true,
|
| 229 |
+
outputShape: ['?', 48],
|
| 230 |
parameters: 0
|
| 231 |
};
|
| 232 |
break;
|
|
|
|
| 293 |
outputShape = 'Depends on input';
|
| 294 |
parameters = `Pool size: ${nodeConfig.poolSize.join('×')}\nStride: ${nodeConfig.strides.join('×')}\nPadding: ${nodeConfig.padding}`;
|
| 295 |
break;
|
| 296 |
+
case 'lstm':
|
| 297 |
+
nodeName = `LSTM ${nodeCounter[nodeType]}`;
|
| 298 |
+
inputShape = 'Connect input';
|
| 299 |
+
outputShape = `[?, ${nodeConfig.units}]`;
|
| 300 |
+
parameters = `Units: ${nodeConfig.units}\nReturn Sequences: ${nodeConfig.returnSequences ? 'Yes' : 'No'}\nGates: 4`;
|
| 301 |
+
break;
|
| 302 |
+
case 'rnn':
|
| 303 |
+
nodeName = `RNN ${nodeCounter[nodeType]}`;
|
| 304 |
+
inputShape = 'Connect input';
|
| 305 |
+
outputShape = `[?, ${nodeConfig.units}]`;
|
| 306 |
+
parameters = `Units: ${nodeConfig.units}\nReturn Sequences: ${nodeConfig.returnSequences ? 'Yes' : 'No'}`;
|
| 307 |
+
break;
|
| 308 |
+
case 'gru':
|
| 309 |
+
nodeName = `GRU ${nodeCounter[nodeType]}`;
|
| 310 |
+
inputShape = 'Connect input';
|
| 311 |
+
outputShape = `[?, ${nodeConfig.units}]`;
|
| 312 |
+
parameters = `Units: ${nodeConfig.units}\nReturn Sequences: ${nodeConfig.returnSequences ? 'Yes' : 'No'}\nGates: 3`;
|
| 313 |
+
break;
|
| 314 |
default:
|
| 315 |
nodeName = 'Unknown Layer';
|
| 316 |
inputShape = 'N/A';
|
|
|
|
| 920 |
}
|
| 921 |
break;
|
| 922 |
|
| 923 |
+
case 'rnn':
|
| 924 |
+
// Get units and check if returning sequences
|
| 925 |
+
const rnnUnits = parseInt(targetConfig.units) || 32;
|
| 926 |
+
const rnnReturnSequences = targetConfig.returnSequences === 'true' || targetConfig.returnSequences === true;
|
| 927 |
+
|
| 928 |
+
// Set output shape based on return_sequences setting
|
| 929 |
+
if (rnnReturnSequences && sourceConfig.outputShape && sourceConfig.outputShape.length > 0) {
|
| 930 |
+
// If return_sequences is true, output is [sequence_length, units]
|
| 931 |
+
outputShape = [sourceConfig.outputShape[0], rnnUnits];
|
| 932 |
+
} else {
|
| 933 |
+
// If return_sequences is false, output is just [units]
|
| 934 |
+
outputShape = [rnnUnits];
|
| 935 |
+
}
|
| 936 |
+
|
| 937 |
+
// Calculate parameters if we have input shape
|
| 938 |
+
if (sourceConfig.outputShape && sourceConfig.outputShape.length > 0) {
|
| 939 |
+
// Get the last dimension of the input as input_features
|
| 940 |
+
const inputFeatures = sourceConfig.outputShape[sourceConfig.outputShape.length - 1];
|
| 941 |
+
const useBias = targetConfig.useBias !== 'false' && targetConfig.useBias !== false;
|
| 942 |
+
|
| 943 |
+
// Formula: input_features * units + units * units + units (bias)
|
| 944 |
+
const inputParams = inputFeatures * rnnUnits;
|
| 945 |
+
const recurrentParams = rnnUnits * rnnUnits;
|
| 946 |
+
const biasParams = useBias ? rnnUnits : 0;
|
| 947 |
+
|
| 948 |
+
parameters = inputParams + recurrentParams + biasParams;
|
| 949 |
+
|
| 950 |
+
console.log(`RNN parameter calculation:
|
| 951 |
+
Input features: ${inputFeatures}
|
| 952 |
+
Units: ${rnnUnits}
|
| 953 |
+
Input weights: ${inputParams}
|
| 954 |
+
Recurrent weights: ${recurrentParams}
|
| 955 |
+
Bias: ${biasParams}
|
| 956 |
+
Total: ${parameters}`);
|
| 957 |
+
}
|
| 958 |
+
break;
|
| 959 |
+
|
| 960 |
+
case 'lstm':
|
| 961 |
+
// Get units and check if returning sequences
|
| 962 |
+
const lstmUnits = parseInt(targetConfig.units) || 64;
|
| 963 |
+
const lstmReturnSequences = targetConfig.returnSequences === 'true' || targetConfig.returnSequences === true;
|
| 964 |
+
|
| 965 |
+
// Set output shape based on return_sequences setting
|
| 966 |
+
if (lstmReturnSequences && sourceConfig.outputShape && sourceConfig.outputShape.length > 0) {
|
| 967 |
+
outputShape = [sourceConfig.outputShape[0], lstmUnits];
|
| 968 |
+
} else {
|
| 969 |
+
outputShape = [lstmUnits];
|
| 970 |
+
}
|
| 971 |
+
|
| 972 |
+
// Calculate parameters if we have input shape
|
| 973 |
+
if (sourceConfig.outputShape && sourceConfig.outputShape.length > 0) {
|
| 974 |
+
// LSTM has 4 gates, each with its own weights and biases
|
| 975 |
+
const inputFeatures = sourceConfig.outputShape[sourceConfig.outputShape.length - 1];
|
| 976 |
+
const useBias = targetConfig.useBias !== 'false' && targetConfig.useBias !== false;
|
| 977 |
+
|
| 978 |
+
// Formula: 4 * (input_features * units + units * units + units (bias))
|
| 979 |
+
const inputParams = 4 * (inputFeatures * lstmUnits);
|
| 980 |
+
const recurrentParams = 4 * (lstmUnits * lstmUnits);
|
| 981 |
+
const biasParams = useBias ? 4 * lstmUnits : 0;
|
| 982 |
+
|
| 983 |
+
parameters = inputParams + recurrentParams + biasParams;
|
| 984 |
+
|
| 985 |
+
console.log(`LSTM parameter calculation:
|
| 986 |
+
Input features: ${inputFeatures}
|
| 987 |
+
Units: ${lstmUnits}
|
| 988 |
+
Gates: 4 (input, forget, cell, output)
|
| 989 |
+
Input weights: ${inputParams}
|
| 990 |
+
Recurrent weights: ${recurrentParams}
|
| 991 |
+
Bias: ${biasParams}
|
| 992 |
+
Total: ${parameters}`);
|
| 993 |
+
}
|
| 994 |
+
break;
|
| 995 |
+
|
| 996 |
+
case 'gru':
|
| 997 |
+
// Get units and check if returning sequences
|
| 998 |
+
const gruUnits = parseInt(targetConfig.units) || 48;
|
| 999 |
+
const gruReturnSequences = targetConfig.returnSequences === 'true' || targetConfig.returnSequences === true;
|
| 1000 |
+
|
| 1001 |
+
// Set output shape based on return_sequences setting
|
| 1002 |
+
if (gruReturnSequences && sourceConfig.outputShape && sourceConfig.outputShape.length > 0) {
|
| 1003 |
+
outputShape = [sourceConfig.outputShape[0], gruUnits];
|
| 1004 |
+
} else {
|
| 1005 |
+
outputShape = [gruUnits];
|
| 1006 |
+
}
|
| 1007 |
+
|
| 1008 |
+
// Calculate parameters if we have input shape
|
| 1009 |
+
if (sourceConfig.outputShape && sourceConfig.outputShape.length > 0) {
|
| 1010 |
+
// GRU has 3 gates, each with its own weights and biases
|
| 1011 |
+
const inputFeatures = sourceConfig.outputShape[sourceConfig.outputShape.length - 1];
|
| 1012 |
+
const useBias = targetConfig.useBias !== 'false' && targetConfig.useBias !== false;
|
| 1013 |
+
|
| 1014 |
+
// Formula: 3 * (input_features * units + units * units + units (bias))
|
| 1015 |
+
const inputParams = 3 * (inputFeatures * gruUnits);
|
| 1016 |
+
const recurrentParams = 3 * (gruUnits * gruUnits);
|
| 1017 |
+
const biasParams = useBias ? 3 * gruUnits : 0;
|
| 1018 |
+
|
| 1019 |
+
parameters = inputParams + recurrentParams + biasParams;
|
| 1020 |
+
|
| 1021 |
+
console.log(`GRU parameter calculation:
|
| 1022 |
+
Input features: ${inputFeatures}
|
| 1023 |
+
Units: ${gruUnits}
|
| 1024 |
+
Gates: 3 (update, reset, new)
|
| 1025 |
+
Input weights: ${inputParams}
|
| 1026 |
+
Recurrent weights: ${recurrentParams}
|
| 1027 |
+
Bias: ${biasParams}
|
| 1028 |
+
Total: ${parameters}`);
|
| 1029 |
+
}
|
| 1030 |
+
break;
|
| 1031 |
+
|
| 1032 |
case 'conv':
|
| 1033 |
if (sourceConfig.outputShape && sourceConfig.outputShape.length >= 3) {
|
| 1034 |
// Very explicit type conversion - ensure all values are numbers
|
js/layer-editor.js
CHANGED
|
@@ -639,19 +639,123 @@
|
|
| 639 |
}
|
| 640 |
break;
|
| 641 |
|
| 642 |
-
case '
|
| 643 |
-
const
|
| 644 |
if (!manualOutputShape) {
|
| 645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
}
|
| 647 |
-
if (inputShape) {
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
} else {
|
| 653 |
-
console.log('No input shape available for
|
| 654 |
-
parameters =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 655 |
}
|
| 656 |
break;
|
| 657 |
}
|
|
@@ -680,8 +784,14 @@
|
|
| 680 |
case 'input':
|
| 681 |
paramsDetails = `Shape: ${(config.shape || [28, 28, 1]).join('×')}`;
|
| 682 |
break;
|
| 683 |
-
case '
|
| 684 |
-
paramsDetails = `Units: ${config.units}<br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 685 |
break;
|
| 686 |
}
|
| 687 |
|
|
@@ -750,7 +860,7 @@
|
|
| 750 |
|
| 751 |
if (dimensionsDisplay && outputShape) {
|
| 752 |
let dimensionsText = '';
|
| 753 |
-
if (nodeType === 'hidden' || nodeType === 'output' || nodeType === '
|
| 754 |
dimensionsText = config.units || '';
|
| 755 |
} else if (nodeType === 'conv' || nodeType === 'pool') {
|
| 756 |
if (Array.isArray(outputShape)) {
|
|
|
|
| 639 |
}
|
| 640 |
break;
|
| 641 |
|
| 642 |
+
case 'rnn':
|
| 643 |
+
const rnnUnits = parseInt(config.units) || 32;
|
| 644 |
if (!manualOutputShape) {
|
| 645 |
+
// Output shape depends on return_sequences
|
| 646 |
+
// If return_sequences is true, output is [input_sequence_length, units]
|
| 647 |
+
// If return_sequences is false, output is [units]
|
| 648 |
+
const returnSequences = config.returnSequences === 'true' || config.returnSequences === true;
|
| 649 |
+
if (returnSequences && inputShape && inputShape.length > 0) {
|
| 650 |
+
// If we have an input shape, use the first dimension as sequence length
|
| 651 |
+
outputShape = [inputShape[0], rnnUnits];
|
| 652 |
+
} else {
|
| 653 |
+
outputShape = [rnnUnits];
|
| 654 |
+
}
|
| 655 |
}
|
| 656 |
+
if (inputShape && inputShape.length > 0) {
|
| 657 |
+
// For RNN, parameters = (input_features * units + units * units + units)
|
| 658 |
+
// Where:
|
| 659 |
+
// - input_features * units: weights from input to hidden
|
| 660 |
+
// - units * units: recurrent weights
|
| 661 |
+
// - units: bias terms (if using bias)
|
| 662 |
+
|
| 663 |
+
// Get input features (last dimension of input shape)
|
| 664 |
+
const inputFeatures = inputShape[inputShape.length - 1];
|
| 665 |
+
const useBias = config.useBias !== 'false' && config.useBias !== false;
|
| 666 |
+
|
| 667 |
+
const inputToHiddenParams = inputFeatures * rnnUnits;
|
| 668 |
+
const recurrentParams = rnnUnits * rnnUnits;
|
| 669 |
+
const biasParams = useBias ? rnnUnits : 0;
|
| 670 |
+
|
| 671 |
+
parameters = inputToHiddenParams + recurrentParams + biasParams;
|
| 672 |
+
|
| 673 |
+
console.log(`RNN parameters calculation:
|
| 674 |
+
Input features: ${inputFeatures}
|
| 675 |
+
RNN units: ${rnnUnits}
|
| 676 |
+
Input-to-hidden params: ${inputFeatures} * ${rnnUnits} = ${inputToHiddenParams}
|
| 677 |
+
Recurrent params: ${rnnUnits} * ${rnnUnits} = ${recurrentParams}
|
| 678 |
+
Bias params: ${biasParams}
|
| 679 |
+
Total: ${parameters}`);
|
| 680 |
} else {
|
| 681 |
+
console.log('No input shape available for RNN parameter calculation');
|
| 682 |
+
parameters = rnnUnits * 2; // Just a rough estimate if input shape is unknown
|
| 683 |
+
}
|
| 684 |
+
break;
|
| 685 |
+
|
| 686 |
+
case 'lstm':
|
| 687 |
+
const lstmUnits = parseInt(config.units) || 64;
|
| 688 |
+
if (!manualOutputShape) {
|
| 689 |
+
// Output shape depends on return_sequences
|
| 690 |
+
const returnSequences = config.returnSequences === 'true' || config.returnSequences === true;
|
| 691 |
+
if (returnSequences && inputShape && inputShape.length > 0) {
|
| 692 |
+
outputShape = [inputShape[0], lstmUnits];
|
| 693 |
+
} else {
|
| 694 |
+
outputShape = [lstmUnits];
|
| 695 |
+
}
|
| 696 |
+
}
|
| 697 |
+
if (inputShape && inputShape.length > 0) {
|
| 698 |
+
// For LSTM, we have 4 gates (input, forget, cell, output)
|
| 699 |
+
// parameters = 4 * (input_features * units + units * units + units)
|
| 700 |
+
|
| 701 |
+
const inputFeatures = inputShape[inputShape.length - 1];
|
| 702 |
+
const useBias = config.useBias !== 'false' && config.useBias !== false;
|
| 703 |
+
|
| 704 |
+
const inputToHiddenParams = 4 * (inputFeatures * lstmUnits);
|
| 705 |
+
const recurrentParams = 4 * (lstmUnits * lstmUnits);
|
| 706 |
+
const biasParams = useBias ? 4 * lstmUnits : 0;
|
| 707 |
+
|
| 708 |
+
parameters = inputToHiddenParams + recurrentParams + biasParams;
|
| 709 |
+
|
| 710 |
+
console.log(`LSTM parameters calculation:
|
| 711 |
+
Input features: ${inputFeatures}
|
| 712 |
+
LSTM units: ${lstmUnits}
|
| 713 |
+
Gates: 4 (input, forget, cell, output)
|
| 714 |
+
Input-to-hidden params: 4 * (${inputFeatures} * ${lstmUnits}) = ${inputToHiddenParams}
|
| 715 |
+
Recurrent params: 4 * (${lstmUnits} * ${lstmUnits}) = ${recurrentParams}
|
| 716 |
+
Bias params: ${biasParams}
|
| 717 |
+
Total: ${parameters}`);
|
| 718 |
+
} else {
|
| 719 |
+
console.log('No input shape available for LSTM parameter calculation');
|
| 720 |
+
parameters = lstmUnits * 8; // Rough estimate
|
| 721 |
+
}
|
| 722 |
+
break;
|
| 723 |
+
|
| 724 |
+
case 'gru':
|
| 725 |
+
const gruUnits = parseInt(config.units) || 48;
|
| 726 |
+
if (!manualOutputShape) {
|
| 727 |
+
// Output shape depends on return_sequences
|
| 728 |
+
const returnSequences = config.returnSequences === 'true' || config.returnSequences === true;
|
| 729 |
+
if (returnSequences && inputShape && inputShape.length > 0) {
|
| 730 |
+
outputShape = [inputShape[0], gruUnits];
|
| 731 |
+
} else {
|
| 732 |
+
outputShape = [gruUnits];
|
| 733 |
+
}
|
| 734 |
+
}
|
| 735 |
+
if (inputShape && inputShape.length > 0) {
|
| 736 |
+
// For GRU, we have 3 gates (update, reset, new)
|
| 737 |
+
// parameters = 3 * (input_features * units + units * units + units)
|
| 738 |
+
|
| 739 |
+
const inputFeatures = inputShape[inputShape.length - 1];
|
| 740 |
+
const useBias = config.useBias !== 'false' && config.useBias !== false;
|
| 741 |
+
|
| 742 |
+
const inputToHiddenParams = 3 * (inputFeatures * gruUnits);
|
| 743 |
+
const recurrentParams = 3 * (gruUnits * gruUnits);
|
| 744 |
+
const biasParams = useBias ? 3 * gruUnits : 0;
|
| 745 |
+
|
| 746 |
+
parameters = inputToHiddenParams + recurrentParams + biasParams;
|
| 747 |
+
|
| 748 |
+
console.log(`GRU parameters calculation:
|
| 749 |
+
Input features: ${inputFeatures}
|
| 750 |
+
GRU units: ${gruUnits}
|
| 751 |
+
Gates: 3 (update, reset, new)
|
| 752 |
+
Input-to-hidden params: 3 * (${inputFeatures} * ${gruUnits}) = ${inputToHiddenParams}
|
| 753 |
+
Recurrent params: 3 * (${gruUnits} * ${gruUnits}) = ${recurrentParams}
|
| 754 |
+
Bias params: ${biasParams}
|
| 755 |
+
Total: ${parameters}`);
|
| 756 |
+
} else {
|
| 757 |
+
console.log('No input shape available for GRU parameter calculation');
|
| 758 |
+
parameters = gruUnits * 6; // Rough estimate
|
| 759 |
}
|
| 760 |
break;
|
| 761 |
}
|
|
|
|
| 784 |
case 'input':
|
| 785 |
paramsDetails = `Shape: ${(config.shape || [28, 28, 1]).join('×')}`;
|
| 786 |
break;
|
| 787 |
+
case 'rnn':
|
| 788 |
+
paramsDetails = `Units: ${config.units}<br>Return Sequences: ${config.returnSequences === 'true' ? 'Yes' : 'No'}`;
|
| 789 |
+
break;
|
| 790 |
+
case 'lstm':
|
| 791 |
+
paramsDetails = `Units: ${config.units}<br>Return Sequences: ${config.returnSequences === 'true' ? 'Yes' : 'No'}`;
|
| 792 |
+
break;
|
| 793 |
+
case 'gru':
|
| 794 |
+
paramsDetails = `Units: ${config.units}<br>Return Sequences: ${config.returnSequences === 'true' ? 'Yes' : 'No'}`;
|
| 795 |
break;
|
| 796 |
}
|
| 797 |
|
|
|
|
| 860 |
|
| 861 |
if (dimensionsDisplay && outputShape) {
|
| 862 |
let dimensionsText = '';
|
| 863 |
+
if (nodeType === 'hidden' || nodeType === 'output' || nodeType === 'rnn' || nodeType === 'lstm' || nodeType === 'gru') {
|
| 864 |
dimensionsText = config.units || '';
|
| 865 |
} else if (nodeType === 'conv' || nodeType === 'pool') {
|
| 866 |
if (Array.isArray(outputShape)) {
|
js/main.js
CHANGED
|
@@ -13,19 +13,36 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 13 |
document.body.appendChild(tooltip);
|
| 14 |
|
| 15 |
// Initialize drag and drop functionality
|
| 16 |
-
initializeDragAndDrop
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
// Network configuration (from UI controls)
|
| 19 |
-
|
| 20 |
-
learningRate: 0.
|
| 21 |
activation: 'relu',
|
| 22 |
batchSize: 32,
|
| 23 |
-
epochs: 10
|
|
|
|
| 24 |
};
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
// Initialize UI controls
|
| 27 |
setupUIControls();
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
// Layer editor modal
|
| 30 |
setupLayerEditor();
|
| 31 |
|
|
@@ -97,56 +114,120 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 97 |
|
| 98 |
// Setup UI controls and event listeners
|
| 99 |
function setupUIControls() {
|
|
|
|
|
|
|
| 100 |
// Learning rate slider
|
| 101 |
const learningRateSlider = document.getElementById('learning-rate');
|
| 102 |
const learningRateValue = document.getElementById('learning-rate-value');
|
| 103 |
|
| 104 |
if (learningRateSlider && learningRateValue) {
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
| 108 |
learningRateSlider.addEventListener('input', (e) => {
|
| 109 |
-
networkConfig.learningRate = parseFloat(e.target.value);
|
| 110 |
-
learningRateValue.textContent = networkConfig.learningRate.toFixed(3);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
}
|
| 113 |
|
| 114 |
// Activation function dropdown
|
| 115 |
const activationSelect = document.getElementById('activation');
|
| 116 |
if (activationSelect) {
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
|
| 119 |
activationSelect.addEventListener('change', (e) => {
|
| 120 |
-
networkConfig.activation = e.target.value;
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
}
|
| 124 |
|
| 125 |
-
//
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
});
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
// Button event listeners
|
| 138 |
const runButton = document.getElementById('run-network');
|
| 139 |
if (runButton) {
|
| 140 |
-
runButton.addEventListener('click',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
}
|
| 142 |
|
| 143 |
const clearButton = document.getElementById('clear-canvas');
|
| 144 |
if (clearButton) {
|
| 145 |
-
clearButton.addEventListener('click',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
}
|
| 147 |
|
| 148 |
// Modal handlers
|
| 149 |
setupModals();
|
|
|
|
|
|
|
| 150 |
}
|
| 151 |
|
| 152 |
// Setup modal handlers
|
|
@@ -1244,192 +1325,296 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 1244 |
|
| 1245 |
// Function to run the neural network simulation
|
| 1246 |
function runNetwork() {
|
| 1247 |
-
console.log('Running neural network simulation with config:', networkConfig);
|
| 1248 |
|
| 1249 |
-
// Get the current network architecture
|
| 1250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1251 |
|
| 1252 |
// Check if we have a valid network
|
| 1253 |
if (networkLayers.layers.length === 0) {
|
| 1254 |
-
|
| 1255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1256 |
}
|
| 1257 |
|
| 1258 |
-
// Validate the network
|
| 1259 |
-
|
| 1260 |
-
networkLayers.layers,
|
| 1261 |
-
networkLayers.connections
|
| 1262 |
-
);
|
| 1263 |
|
| 1264 |
-
if (
|
| 1265 |
-
|
| 1266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1267 |
}
|
| 1268 |
|
| 1269 |
// Add animation class to all nodes
|
| 1270 |
-
document.querySelectorAll('.canvas-node')
|
|
|
|
| 1271 |
node.classList.add('highlight-pulse');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1272 |
});
|
| 1273 |
|
| 1274 |
// Animate connections to show data flow
|
| 1275 |
-
document.querySelectorAll('.connection').forEach((
|
|
|
|
| 1276 |
setTimeout(() => {
|
| 1277 |
-
|
|
|
|
| 1278 |
|
| 1279 |
-
//
|
| 1280 |
setTimeout(() => {
|
| 1281 |
-
|
| 1282 |
-
},
|
| 1283 |
-
},
|
| 1284 |
});
|
| 1285 |
|
| 1286 |
-
//
|
| 1287 |
-
|
| 1288 |
|
| 1289 |
-
|
| 1290 |
-
setTimeout(() => {
|
| 1291 |
-
document.querySelectorAll('.canvas-node').forEach(node => {
|
| 1292 |
-
node.classList.remove('highlight-pulse');
|
| 1293 |
-
});
|
| 1294 |
-
}, 3000);
|
| 1295 |
}
|
| 1296 |
|
| 1297 |
-
// Simulate training progress
|
| 1298 |
-
function
|
| 1299 |
const progressBar = document.querySelector('.progress-bar');
|
| 1300 |
const lossValue = document.getElementById('loss-value');
|
| 1301 |
const accuracyValue = document.getElementById('accuracy-value');
|
| 1302 |
|
| 1303 |
-
if (
|
| 1304 |
-
|
| 1305 |
-
|
| 1306 |
-
|
| 1307 |
-
|
| 1308 |
-
accuracyValue.textContent = '0.12';
|
| 1309 |
-
|
| 1310 |
-
// Simulate progress over time
|
| 1311 |
-
let progress = 0;
|
| 1312 |
-
let loss = 2.3021;
|
| 1313 |
-
let accuracy = 0.12;
|
| 1314 |
-
|
| 1315 |
-
const interval = setInterval(() => {
|
| 1316 |
-
progress += 10;
|
| 1317 |
-
loss *= 0.85; // Decrease loss over time
|
| 1318 |
-
accuracy = Math.min(0.99, accuracy * 1.2); // Increase accuracy over time
|
| 1319 |
|
| 1320 |
-
|
| 1321 |
-
|
| 1322 |
-
|
|
|
|
| 1323 |
|
| 1324 |
-
|
| 1325 |
-
|
| 1326 |
-
|
| 1327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1328 |
}
|
| 1329 |
|
| 1330 |
// Function to clear all nodes from the canvas
|
| 1331 |
function clearCanvas() {
|
| 1332 |
-
|
| 1333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1334 |
}
|
| 1335 |
-
|
| 1336 |
-
// Reset progress indicators
|
| 1337 |
-
const progressBar = document.querySelector('.progress-bar');
|
| 1338 |
-
const lossValue = document.getElementById('loss-value');
|
| 1339 |
-
const accuracyValue = document.getElementById('accuracy-value');
|
| 1340 |
-
|
| 1341 |
-
if (progressBar) progressBar.style.width = '0%';
|
| 1342 |
-
if (lossValue) lossValue.textContent = '-';
|
| 1343 |
-
if (accuracyValue) accuracyValue.textContent = '-';
|
| 1344 |
}
|
| 1345 |
|
| 1346 |
// Update activation function graph
|
| 1347 |
function updateActivationFunctionGraph(activationType) {
|
| 1348 |
-
const activationGraph = document.querySelector('.activation-
|
| 1349 |
if (!activationGraph) return;
|
| 1350 |
|
| 1351 |
-
//
|
| 1352 |
-
|
| 1353 |
-
if (!
|
| 1354 |
-
canvas = document.createElement('canvas');
|
| 1355 |
-
canvas.width = 200;
|
| 1356 |
-
canvas.height = 100;
|
| 1357 |
-
activationGraph.appendChild(canvas);
|
| 1358 |
-
}
|
| 1359 |
-
|
| 1360 |
-
const ctx = canvas.getContext('2d');
|
| 1361 |
|
| 1362 |
-
// Clear
|
| 1363 |
-
|
|
|
|
|
|
|
| 1364 |
|
| 1365 |
-
//
|
| 1366 |
-
|
| 1367 |
-
|
|
|
|
|
|
|
| 1368 |
|
| 1369 |
// Draw axes
|
| 1370 |
-
|
| 1371 |
-
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
-
|
| 1375 |
-
|
| 1376 |
-
|
| 1377 |
-
|
| 1378 |
-
|
| 1379 |
-
|
| 1380 |
-
|
| 1381 |
-
|
| 1382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1383 |
|
| 1384 |
switch(activationType) {
|
| 1385 |
case 'relu':
|
| 1386 |
-
|
| 1387 |
-
ctx.lineTo(canvas.width / 2, canvas.height / 2);
|
| 1388 |
-
ctx.lineTo(canvas.width, 0);
|
| 1389 |
break;
|
| 1390 |
|
| 1391 |
case 'sigmoid':
|
| 1392 |
-
|
| 1393 |
-
const normalizedX = (x / canvas.width - 0.5) * 10;
|
| 1394 |
-
const sigmoidY = 1 / (1 + Math.exp(-normalizedX));
|
| 1395 |
-
const y = canvas.height - sigmoidY * canvas.height;
|
| 1396 |
-
if (x === 0) ctx.moveTo(x, y);
|
| 1397 |
-
else ctx.lineTo(x, y);
|
| 1398 |
-
}
|
| 1399 |
break;
|
| 1400 |
|
| 1401 |
case 'tanh':
|
| 1402 |
-
|
| 1403 |
-
const normalizedX = (x / canvas.width - 0.5) * 6;
|
| 1404 |
-
const tanhY = Math.tanh(normalizedX);
|
| 1405 |
-
const y = canvas.height / 2 - tanhY * canvas.height / 2;
|
| 1406 |
-
if (x === 0) ctx.moveTo(x, y);
|
| 1407 |
-
else ctx.lineTo(x, y);
|
| 1408 |
-
}
|
| 1409 |
-
break;
|
| 1410 |
-
|
| 1411 |
-
case 'softmax':
|
| 1412 |
-
// Just a representative curve for softmax
|
| 1413 |
-
ctx.moveTo(0, canvas.height * 0.8);
|
| 1414 |
-
ctx.bezierCurveTo(
|
| 1415 |
-
canvas.width * 0.3, canvas.height * 0.7,
|
| 1416 |
-
canvas.width * 0.6, canvas.height * 0.3,
|
| 1417 |
-
canvas.width, canvas.height * 0.2
|
| 1418 |
-
);
|
| 1419 |
break;
|
| 1420 |
|
| 1421 |
default: // Linear
|
| 1422 |
-
|
| 1423 |
-
ctx.lineTo(canvas.width, canvas.height * 0.2);
|
| 1424 |
}
|
| 1425 |
|
| 1426 |
-
|
|
|
|
| 1427 |
|
| 1428 |
// Add label
|
| 1429 |
-
|
| 1430 |
-
|
| 1431 |
-
|
| 1432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1433 |
}
|
| 1434 |
|
| 1435 |
// Setup node hover effects for tooltips
|
|
|
|
| 13 |
document.body.appendChild(tooltip);
|
| 14 |
|
| 15 |
// Initialize drag and drop functionality
|
| 16 |
+
if (typeof initializeDragAndDrop === 'function') {
|
| 17 |
+
initializeDragAndDrop();
|
| 18 |
+
} else {
|
| 19 |
+
console.warn('initializeDragAndDrop function not found');
|
| 20 |
+
}
|
| 21 |
|
| 22 |
// Network configuration (from UI controls)
|
| 23 |
+
window.networkConfig = {
|
| 24 |
+
learningRate: 0.1,
|
| 25 |
activation: 'relu',
|
| 26 |
batchSize: 32,
|
| 27 |
+
epochs: 10,
|
| 28 |
+
optimizer: 'sgd'
|
| 29 |
};
|
| 30 |
|
| 31 |
+
// Make sure window.networkConfig is available globally for other scripts
|
| 32 |
+
if (!window.networkConfig) {
|
| 33 |
+
window.networkConfig = networkConfig;
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
// Initialize UI controls
|
| 37 |
setupUIControls();
|
| 38 |
|
| 39 |
+
// Force activation function graph update
|
| 40 |
+
setTimeout(() => {
|
| 41 |
+
const activationType = document.getElementById('activation')?.value || 'relu';
|
| 42 |
+
console.log('Ensuring activation function graph is rendered:', activationType);
|
| 43 |
+
updateActivationFunctionGraph(activationType);
|
| 44 |
+
}, 200);
|
| 45 |
+
|
| 46 |
// Layer editor modal
|
| 47 |
setupLayerEditor();
|
| 48 |
|
|
|
|
| 114 |
|
| 115 |
// Setup UI controls and event listeners
|
| 116 |
function setupUIControls() {
|
| 117 |
+
console.log('Setting up UI controls...');
|
| 118 |
+
|
| 119 |
// Learning rate slider
|
| 120 |
const learningRateSlider = document.getElementById('learning-rate');
|
| 121 |
const learningRateValue = document.getElementById('learning-rate-value');
|
| 122 |
|
| 123 |
if (learningRateSlider && learningRateValue) {
|
| 124 |
+
// Set initial value - default to 0.1 if not set in networkConfig
|
| 125 |
+
window.networkConfig.learningRate = window.networkConfig.learningRate || 0.1;
|
| 126 |
+
learningRateSlider.value = window.networkConfig.learningRate;
|
| 127 |
+
learningRateValue.textContent = window.networkConfig.learningRate.toFixed(3);
|
| 128 |
|
| 129 |
learningRateSlider.addEventListener('input', (e) => {
|
| 130 |
+
window.networkConfig.learningRate = parseFloat(e.target.value);
|
| 131 |
+
learningRateValue.textContent = window.networkConfig.learningRate.toFixed(3);
|
| 132 |
+
console.log(`Learning rate updated: ${window.networkConfig.learningRate}`);
|
| 133 |
+
|
| 134 |
+
// Trigger network configuration update event
|
| 135 |
+
document.dispatchEvent(new CustomEvent('networkConfigUpdated', {
|
| 136 |
+
detail: {
|
| 137 |
+
type: 'learningRate',
|
| 138 |
+
value: window.networkConfig.learningRate
|
| 139 |
+
}
|
| 140 |
+
}));
|
| 141 |
});
|
| 142 |
+
|
| 143 |
+
console.log('Learning rate slider initialized with value:', window.networkConfig.learningRate);
|
| 144 |
+
} else {
|
| 145 |
+
console.warn('Learning rate controls not found in the DOM');
|
| 146 |
}
|
| 147 |
|
| 148 |
// Activation function dropdown
|
| 149 |
const activationSelect = document.getElementById('activation');
|
| 150 |
if (activationSelect) {
|
| 151 |
+
// Set initial value - default to 'relu' if not set in networkConfig
|
| 152 |
+
window.networkConfig.activation = window.networkConfig.activation || 'relu';
|
| 153 |
+
activationSelect.value = window.networkConfig.activation;
|
| 154 |
|
| 155 |
activationSelect.addEventListener('change', (e) => {
|
| 156 |
+
window.networkConfig.activation = e.target.value;
|
| 157 |
+
console.log(`Activation function updated: ${window.networkConfig.activation}`);
|
| 158 |
+
|
| 159 |
+
// Update activation function graph
|
| 160 |
+
updateActivationFunctionGraph(window.networkConfig.activation);
|
| 161 |
+
|
| 162 |
+
// Trigger network configuration update event
|
| 163 |
+
document.dispatchEvent(new CustomEvent('networkConfigUpdated', {
|
| 164 |
+
detail: {
|
| 165 |
+
type: 'activation',
|
| 166 |
+
value: window.networkConfig.activation
|
| 167 |
+
}
|
| 168 |
+
}));
|
| 169 |
});
|
| 170 |
+
|
| 171 |
+
console.log('Activation select initialized with value:', window.networkConfig.activation);
|
| 172 |
+
|
| 173 |
+
// Initialize activation function graph with current value
|
| 174 |
+
updateActivationFunctionGraph(window.networkConfig.activation);
|
| 175 |
+
} else {
|
| 176 |
+
console.warn('Activation select not found in the DOM');
|
| 177 |
}
|
| 178 |
|
| 179 |
+
// Optimizer dropdown
|
| 180 |
+
const optimizerSelect = document.getElementById('optimizer');
|
| 181 |
+
if (optimizerSelect) {
|
| 182 |
+
// Set initial value - default to 'sgd' if not set in networkConfig
|
| 183 |
+
window.networkConfig.optimizer = window.networkConfig.optimizer || 'sgd';
|
| 184 |
+
optimizerSelect.value = window.networkConfig.optimizer;
|
| 185 |
+
|
| 186 |
+
optimizerSelect.addEventListener('change', (e) => {
|
| 187 |
+
window.networkConfig.optimizer = e.target.value;
|
| 188 |
+
console.log(`Optimizer updated: ${window.networkConfig.optimizer}`);
|
| 189 |
+
|
| 190 |
+
// Trigger network configuration update event
|
| 191 |
+
document.dispatchEvent(new CustomEvent('networkConfigUpdated', {
|
| 192 |
+
detail: {
|
| 193 |
+
type: 'optimizer',
|
| 194 |
+
value: window.networkConfig.optimizer
|
| 195 |
+
}
|
| 196 |
+
}));
|
| 197 |
});
|
| 198 |
+
|
| 199 |
+
console.log('Optimizer select initialized with value:', window.networkConfig.optimizer);
|
| 200 |
+
} else {
|
| 201 |
+
console.warn('Optimizer select not found in the DOM');
|
| 202 |
+
}
|
| 203 |
|
| 204 |
// Button event listeners
|
| 205 |
const runButton = document.getElementById('run-network');
|
| 206 |
if (runButton) {
|
| 207 |
+
runButton.addEventListener('click', () => {
|
| 208 |
+
console.log('Run network button clicked');
|
| 209 |
+
runNetwork();
|
| 210 |
+
});
|
| 211 |
+
console.log('Run network button initialized');
|
| 212 |
+
} else {
|
| 213 |
+
console.warn('Run network button not found in the DOM');
|
| 214 |
}
|
| 215 |
|
| 216 |
const clearButton = document.getElementById('clear-canvas');
|
| 217 |
if (clearButton) {
|
| 218 |
+
clearButton.addEventListener('click', () => {
|
| 219 |
+
console.log('Clear canvas button clicked');
|
| 220 |
+
clearCanvas();
|
| 221 |
+
});
|
| 222 |
+
console.log('Clear canvas button initialized');
|
| 223 |
+
} else {
|
| 224 |
+
console.warn('Clear canvas button not found in the DOM');
|
| 225 |
}
|
| 226 |
|
| 227 |
// Modal handlers
|
| 228 |
setupModals();
|
| 229 |
+
|
| 230 |
+
console.log('UI controls setup complete');
|
| 231 |
}
|
| 232 |
|
| 233 |
// Setup modal handlers
|
|
|
|
| 1325 |
|
| 1326 |
// Function to run the neural network simulation
|
| 1327 |
function runNetwork() {
|
| 1328 |
+
console.log('Running neural network simulation with config:', window.networkConfig);
|
| 1329 |
|
| 1330 |
+
// Get the current network architecture if possible
|
| 1331 |
+
let networkLayers = { layers: [], connections: [] };
|
| 1332 |
+
|
| 1333 |
+
if (window.dragDrop && typeof window.dragDrop.getNetworkArchitecture === 'function') {
|
| 1334 |
+
try {
|
| 1335 |
+
networkLayers = window.dragDrop.getNetworkArchitecture();
|
| 1336 |
+
console.log('Network architecture retrieved:', networkLayers);
|
| 1337 |
+
} catch (error) {
|
| 1338 |
+
console.error('Error getting network architecture:', error);
|
| 1339 |
+
}
|
| 1340 |
+
} else {
|
| 1341 |
+
console.warn('dragDrop.getNetworkArchitecture is not available, using fallback');
|
| 1342 |
+
|
| 1343 |
+
// Fallback: Get nodes and connections manually
|
| 1344 |
+
const canvas = document.getElementById('network-canvas');
|
| 1345 |
+
if (canvas) {
|
| 1346 |
+
const nodes = canvas.querySelectorAll('.canvas-node');
|
| 1347 |
+
const connections = canvas.querySelectorAll('.connection');
|
| 1348 |
+
|
| 1349 |
+
if (nodes.length === 0) {
|
| 1350 |
+
alert('Please add some nodes to the network first!');
|
| 1351 |
+
return;
|
| 1352 |
+
}
|
| 1353 |
+
|
| 1354 |
+
// Just animate what's visible on the canvas
|
| 1355 |
+
console.log(`Found ${nodes.length} nodes and ${connections.length} connections on canvas`);
|
| 1356 |
+
}
|
| 1357 |
+
}
|
| 1358 |
|
| 1359 |
// Check if we have a valid network
|
| 1360 |
if (networkLayers.layers.length === 0) {
|
| 1361 |
+
// Check for nodes on the canvas directly
|
| 1362 |
+
const canvas = document.getElementById('network-canvas');
|
| 1363 |
+
const nodes = canvas ? canvas.querySelectorAll('.canvas-node') : [];
|
| 1364 |
+
|
| 1365 |
+
if (nodes.length === 0) {
|
| 1366 |
+
alert('Please add some nodes to the network first!');
|
| 1367 |
+
return;
|
| 1368 |
+
}
|
| 1369 |
}
|
| 1370 |
|
| 1371 |
+
// Validate the network if possible
|
| 1372 |
+
let validationResult = { valid: true, errors: [] };
|
|
|
|
|
|
|
|
|
|
| 1373 |
|
| 1374 |
+
if (window.neuralNetwork && typeof window.neuralNetwork.validateNetwork === 'function') {
|
| 1375 |
+
try {
|
| 1376 |
+
validationResult = window.neuralNetwork.validateNetwork(
|
| 1377 |
+
networkLayers.layers,
|
| 1378 |
+
networkLayers.connections
|
| 1379 |
+
);
|
| 1380 |
+
|
| 1381 |
+
if (!validationResult.valid) {
|
| 1382 |
+
alert('Network is not valid: ' + validationResult.errors.join('\n'));
|
| 1383 |
+
return;
|
| 1384 |
+
}
|
| 1385 |
+
} catch (error) {
|
| 1386 |
+
console.error('Error validating network:', error);
|
| 1387 |
+
// Continue anyway since we'll just animate
|
| 1388 |
+
}
|
| 1389 |
+
} else {
|
| 1390 |
+
console.warn('neuralNetwork.validateNetwork is not available, skipping validation');
|
| 1391 |
}
|
| 1392 |
|
| 1393 |
// Add animation class to all nodes
|
| 1394 |
+
const nodes = document.querySelectorAll('.canvas-node');
|
| 1395 |
+
nodes.forEach(node => {
|
| 1396 |
node.classList.add('highlight-pulse');
|
| 1397 |
+
|
| 1398 |
+
// Add a delay to remove the animation class
|
| 1399 |
+
setTimeout(() => {
|
| 1400 |
+
node.classList.remove('highlight-pulse');
|
| 1401 |
+
}, 1500);
|
| 1402 |
});
|
| 1403 |
|
| 1404 |
// Animate connections to show data flow
|
| 1405 |
+
document.querySelectorAll('.connection').forEach((conn, index) => {
|
| 1406 |
+
// Apply sequential animation to show data flow direction
|
| 1407 |
setTimeout(() => {
|
| 1408 |
+
conn.style.transition = 'box-shadow 0.3s ease-in-out';
|
| 1409 |
+
conn.style.boxShadow = '0 0 15px rgba(52, 152, 219, 0.8)';
|
| 1410 |
|
| 1411 |
+
// Add a delay to remove the highlight
|
| 1412 |
setTimeout(() => {
|
| 1413 |
+
conn.style.boxShadow = '0 0 8px rgba(52, 152, 219, 0.5)';
|
| 1414 |
+
}, 600);
|
| 1415 |
+
}, index * 150); // Stagger the animations
|
| 1416 |
});
|
| 1417 |
|
| 1418 |
+
// Update training progress visualization
|
| 1419 |
+
simulateTrainingProgress();
|
| 1420 |
|
| 1421 |
+
console.log('Network animation complete');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1422 |
}
|
| 1423 |
|
| 1424 |
+
// Simulate training progress for visualization
|
| 1425 |
+
function simulateTrainingProgress() {
|
| 1426 |
const progressBar = document.querySelector('.progress-bar');
|
| 1427 |
const lossValue = document.getElementById('loss-value');
|
| 1428 |
const accuracyValue = document.getElementById('accuracy-value');
|
| 1429 |
|
| 1430 |
+
if (progressBar && lossValue && accuracyValue) {
|
| 1431 |
+
// Reset progress bar
|
| 1432 |
+
progressBar.style.width = '0%';
|
| 1433 |
+
lossValue.textContent = '1.0000';
|
| 1434 |
+
accuracyValue.textContent = '0%';
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1435 |
|
| 1436 |
+
// Simulate training progress with animation
|
| 1437 |
+
let progress = 0;
|
| 1438 |
+
let loss = 1.0;
|
| 1439 |
+
let accuracy = 0.0;
|
| 1440 |
|
| 1441 |
+
const interval = setInterval(() => {
|
| 1442 |
+
progress += 2;
|
| 1443 |
+
loss = Math.max(0.05, loss * 0.95);
|
| 1444 |
+
accuracy = Math.min(99, accuracy + 2);
|
| 1445 |
+
|
| 1446 |
+
progressBar.style.width = `${progress}%`;
|
| 1447 |
+
lossValue.textContent = loss.toFixed(4);
|
| 1448 |
+
accuracyValue.textContent = `${accuracy.toFixed(1)}%`;
|
| 1449 |
+
|
| 1450 |
+
if (progress >= 100) {
|
| 1451 |
+
clearInterval(interval);
|
| 1452 |
+
|
| 1453 |
+
// Final values
|
| 1454 |
+
lossValue.textContent = '0.0342';
|
| 1455 |
+
accuracyValue.textContent = '98.7%';
|
| 1456 |
+
|
| 1457 |
+
console.log('Training simulation complete');
|
| 1458 |
+
}
|
| 1459 |
+
}, 50);
|
| 1460 |
+
}
|
| 1461 |
}
|
| 1462 |
|
| 1463 |
// Function to clear all nodes from the canvas
|
| 1464 |
function clearCanvas() {
|
| 1465 |
+
// Show confirmation dialog
|
| 1466 |
+
if (confirm('Are you sure you want to clear the canvas? This will remove all nodes and connections.')) {
|
| 1467 |
+
// Use the drag-drop module's clear function if available
|
| 1468 |
+
if (window.dragDrop && typeof window.dragDrop.clearAllNodes === 'function') {
|
| 1469 |
+
window.dragDrop.clearAllNodes();
|
| 1470 |
+
} else {
|
| 1471 |
+
// Fallback: manually remove all canvas nodes
|
| 1472 |
+
const canvas = document.getElementById('network-canvas');
|
| 1473 |
+
const nodes = canvas.querySelectorAll('.canvas-node');
|
| 1474 |
+
const connections = canvas.querySelectorAll('.connection');
|
| 1475 |
+
|
| 1476 |
+
// Remove all connections
|
| 1477 |
+
connections.forEach(conn => conn.remove());
|
| 1478 |
+
|
| 1479 |
+
// Remove all nodes
|
| 1480 |
+
nodes.forEach(node => node.remove());
|
| 1481 |
+
|
| 1482 |
+
// Add canvas hint
|
| 1483 |
+
if (canvas.querySelector('.canvas-hint') === null) {
|
| 1484 |
+
const hint = document.createElement('div');
|
| 1485 |
+
hint.className = 'canvas-hint';
|
| 1486 |
+
hint.innerHTML = `
|
| 1487 |
+
<strong>Build Your Neural Network</strong>
|
| 1488 |
+
Drag components from the left panel and drop them here.
|
| 1489 |
+
<br>Connect them by dragging from output (right) to input (left) ports.
|
| 1490 |
+
`;
|
| 1491 |
+
canvas.appendChild(hint);
|
| 1492 |
+
}
|
| 1493 |
+
|
| 1494 |
+
console.log('Canvas cleared manually');
|
| 1495 |
+
}
|
| 1496 |
+
|
| 1497 |
+
// Reset progress indicators
|
| 1498 |
+
const progressBar = document.querySelector('.progress-bar');
|
| 1499 |
+
const lossValue = document.getElementById('loss-value');
|
| 1500 |
+
const accuracyValue = document.getElementById('accuracy-value');
|
| 1501 |
+
|
| 1502 |
+
if (progressBar) progressBar.style.width = '0%';
|
| 1503 |
+
if (lossValue) lossValue.textContent = '-';
|
| 1504 |
+
if (accuracyValue) accuracyValue.textContent = '-';
|
| 1505 |
+
|
| 1506 |
+
console.log('Canvas cleared and progress indicators reset');
|
| 1507 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1508 |
}
|
| 1509 |
|
| 1510 |
// Update activation function graph
|
| 1511 |
function updateActivationFunctionGraph(activationType) {
|
| 1512 |
+
const activationGraph = document.querySelector('.activation-graph');
|
| 1513 |
if (!activationGraph) return;
|
| 1514 |
|
| 1515 |
+
// Get SVG element
|
| 1516 |
+
const svg = activationGraph.querySelector('.activation-curve');
|
| 1517 |
+
if (!svg) return;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1518 |
|
| 1519 |
+
// Clear previous paths
|
| 1520 |
+
while (svg.firstChild) {
|
| 1521 |
+
svg.removeChild(svg.firstChild);
|
| 1522 |
+
}
|
| 1523 |
|
| 1524 |
+
// Create path for the activation function
|
| 1525 |
+
const path = document.createElementNS('http://www.w3.org/2000/svg', 'path');
|
| 1526 |
+
path.setAttribute('stroke', '#3498db');
|
| 1527 |
+
path.setAttribute('stroke-width', '2');
|
| 1528 |
+
path.setAttribute('fill', 'none');
|
| 1529 |
|
| 1530 |
// Draw axes
|
| 1531 |
+
const xAxis = document.createElementNS('http://www.w3.org/2000/svg', 'line');
|
| 1532 |
+
xAxis.setAttribute('x1', '0');
|
| 1533 |
+
xAxis.setAttribute('y1', '50');
|
| 1534 |
+
xAxis.setAttribute('x2', '100');
|
| 1535 |
+
xAxis.setAttribute('y2', '50');
|
| 1536 |
+
xAxis.setAttribute('stroke', '#ccc');
|
| 1537 |
+
xAxis.setAttribute('stroke-width', '1');
|
| 1538 |
+
|
| 1539 |
+
const yAxis = document.createElementNS('http://www.w3.org/2000/svg', 'line');
|
| 1540 |
+
yAxis.setAttribute('x1', '50');
|
| 1541 |
+
yAxis.setAttribute('y1', '0');
|
| 1542 |
+
yAxis.setAttribute('x2', '50');
|
| 1543 |
+
yAxis.setAttribute('y2', '100');
|
| 1544 |
+
yAxis.setAttribute('stroke', '#ccc');
|
| 1545 |
+
yAxis.setAttribute('stroke-width', '1');
|
| 1546 |
+
|
| 1547 |
+
// Add axes to SVG
|
| 1548 |
+
svg.appendChild(xAxis);
|
| 1549 |
+
svg.appendChild(yAxis);
|
| 1550 |
+
|
| 1551 |
+
// Calculate path based on activation type
|
| 1552 |
+
let pathData = '';
|
| 1553 |
|
| 1554 |
switch(activationType) {
|
| 1555 |
case 'relu':
|
| 1556 |
+
pathData = 'M0,50 L50,50 L100,0';
|
|
|
|
|
|
|
| 1557 |
break;
|
| 1558 |
|
| 1559 |
case 'sigmoid':
|
| 1560 |
+
pathData = generateSigmoidPath();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1561 |
break;
|
| 1562 |
|
| 1563 |
case 'tanh':
|
| 1564 |
+
pathData = generateTanhPath();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1565 |
break;
|
| 1566 |
|
| 1567 |
default: // Linear
|
| 1568 |
+
pathData = 'M0,80 L100,20';
|
|
|
|
| 1569 |
}
|
| 1570 |
|
| 1571 |
+
path.setAttribute('d', pathData);
|
| 1572 |
+
svg.appendChild(path);
|
| 1573 |
|
| 1574 |
// Add label
|
| 1575 |
+
const label = document.createElementNS('http://www.w3.org/2000/svg', 'text');
|
| 1576 |
+
label.setAttribute('x', '50');
|
| 1577 |
+
label.setAttribute('y', '95');
|
| 1578 |
+
label.setAttribute('text-anchor', 'middle');
|
| 1579 |
+
label.setAttribute('font-size', '10');
|
| 1580 |
+
label.setAttribute('fill', '#333');
|
| 1581 |
+
label.textContent = activationType.charAt(0).toUpperCase() + activationType.slice(1);
|
| 1582 |
+
|
| 1583 |
+
svg.appendChild(label);
|
| 1584 |
+
|
| 1585 |
+
console.log(`Activation function graph updated: ${activationType}`);
|
| 1586 |
+
}
|
| 1587 |
+
|
| 1588 |
+
// Generate path data for sigmoid function
|
| 1589 |
+
function generateSigmoidPath() {
|
| 1590 |
+
let pathData = '';
|
| 1591 |
+
|
| 1592 |
+
for (let x = 0; x <= 100; x += 2) {
|
| 1593 |
+
const normalizedX = (x / 100 - 0.5) * 10;
|
| 1594 |
+
const sigmoidY = 1 / (1 + Math.exp(-normalizedX));
|
| 1595 |
+
const y = 100 - sigmoidY * 100;
|
| 1596 |
+
|
| 1597 |
+
if (x === 0) pathData += `M${x},${y}`;
|
| 1598 |
+
else pathData += ` L${x},${y}`;
|
| 1599 |
+
}
|
| 1600 |
+
|
| 1601 |
+
return pathData;
|
| 1602 |
+
}
|
| 1603 |
+
|
| 1604 |
+
// Generate path data for tanh function
|
| 1605 |
+
function generateTanhPath() {
|
| 1606 |
+
let pathData = '';
|
| 1607 |
+
|
| 1608 |
+
for (let x = 0; x <= 100; x += 2) {
|
| 1609 |
+
const normalizedX = (x / 100 - 0.5) * 6;
|
| 1610 |
+
const tanhY = Math.tanh(normalizedX);
|
| 1611 |
+
const y = 50 - tanhY * 50;
|
| 1612 |
+
|
| 1613 |
+
if (x === 0) pathData += `M${x},${y}`;
|
| 1614 |
+
else pathData += ` L${x},${y}`;
|
| 1615 |
+
}
|
| 1616 |
+
|
| 1617 |
+
return pathData;
|
| 1618 |
}
|
| 1619 |
|
| 1620 |
// Setup node hover effects for tooltips
|