Upload 7 files
Browse files- README.md +50 -3
- js/drag-drop.js +93 -388
- js/main.js +417 -26
- js/neural-network.js +53 -10
README.md
CHANGED
|
@@ -1,9 +1,56 @@
|
|
| 1 |
---
|
| 2 |
title: Neural Network Playground
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: blue
|
| 6 |
sdk: static
|
| 7 |
-
pinned:
|
|
|
|
| 8 |
---
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Neural Network Playground
|
| 3 |
+
emoji: 🧠
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: blue
|
| 6 |
sdk: static
|
| 7 |
+
pinned: true
|
| 8 |
+
license: mit
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
# Neural Network Playground
|
| 12 |
+
|
| 13 |
+

|
| 14 |
+
|
| 15 |
+
## Introduction
|
| 16 |
+
|
| 17 |
+
Neural Network Playground is an interactive visualization tool that helps you understand how neural networks work. Built with plain HTML, CSS, and JavaScript, it allows you to:
|
| 18 |
+
|
| 19 |
+
- Create custom neural network architectures by dragging and dropping different types of layers
|
| 20 |
+
- Connect layers and see how data flows through the network
|
| 21 |
+
- View input and output shapes for each layer
|
| 22 |
+
- Visualize layer parameters and configurations
|
| 23 |
+
|
| 24 |
+
## Features
|
| 25 |
+
|
| 26 |
+
- **Interactive Interface**: Drag and drop nodes to create neural networks
|
| 27 |
+
- **Shape Information**: See input and output shapes for each node
|
| 28 |
+
- **Detailed Parameters**: View kernel size, stride, and padding for applicable layers
|
| 29 |
+
- **Layer Types**:
|
| 30 |
+
- Input Layer
|
| 31 |
+
- Hidden Layer
|
| 32 |
+
- Output Layer
|
| 33 |
+
- Convolutional Layer
|
| 34 |
+
- Pooling Layer
|
| 35 |
+
- Linear Regression Layer
|
| 36 |
+
|
| 37 |
+
## How to Use
|
| 38 |
+
|
| 39 |
+
1. Drag components from the left panel onto the canvas
|
| 40 |
+
2. Connect them by dragging from output (right) ports to input (left) ports
|
| 41 |
+
3. Double-click on nodes to edit their properties
|
| 42 |
+
4. Use the network settings to adjust learning rate and activation functions
|
| 43 |
+
|
| 44 |
+
## Technical Details
|
| 45 |
+
|
| 46 |
+
The playground visualizes how neural networks process data and helps users understand concepts like:
|
| 47 |
+
|
| 48 |
+
- Shape transformations between layers
|
| 49 |
+
- Parameter calculations
|
| 50 |
+
- The effects of different layer configurations
|
| 51 |
+
|
| 52 |
+
This is an educational tool designed to make neural networks more accessible and understandable.
|
| 53 |
+
|
| 54 |
+
## License
|
| 55 |
+
|
| 56 |
+
MIT
|
js/drag-drop.js
CHANGED
|
@@ -16,6 +16,17 @@ function initializeDragAndDrop() {
|
|
| 16 |
connections: []
|
| 17 |
};
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
// Add event listeners to draggable items
|
| 20 |
nodeItems.forEach(item => {
|
| 21 |
item.addEventListener('dragstart', handleDragStart);
|
|
@@ -111,7 +122,7 @@ function initializeDragAndDrop() {
|
|
| 111 |
inputShape = 'Connect input';
|
| 112 |
outputShape = 'Depends on input';
|
| 113 |
// Create parameter string
|
| 114 |
-
parameters = `
|
| 115 |
break;
|
| 116 |
case 'pool':
|
| 117 |
const poolCount = document.querySelectorAll('.canvas-node[data-type="pool"]').length;
|
|
@@ -127,11 +138,6 @@ function initializeDragAndDrop() {
|
|
| 127 |
parameters = 'N/A';
|
| 128 |
}
|
| 129 |
|
| 130 |
-
// Create node header
|
| 131 |
-
const nodeHeader = document.createElement('div');
|
| 132 |
-
nodeHeader.className = 'node-header';
|
| 133 |
-
nodeHeader.textContent = nodeName;
|
| 134 |
-
|
| 135 |
// Create node content
|
| 136 |
const nodeContent = document.createElement('div');
|
| 137 |
nodeContent.className = 'node-content';
|
|
@@ -147,25 +153,71 @@ function initializeDragAndDrop() {
|
|
| 147 |
// Add parameters section
|
| 148 |
const paramsSection = document.createElement('div');
|
| 149 |
paramsSection.className = 'params-section';
|
| 150 |
-
paramsSection.innerHTML =
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
inputPort.className = 'port input-port';
|
| 155 |
-
inputPort.setAttribute('data-port-type', 'input');
|
| 156 |
-
|
| 157 |
-
const outputPort = document.createElement('div');
|
| 158 |
-
outputPort.className = 'port output-port';
|
| 159 |
-
outputPort.setAttribute('data-port-type', 'output');
|
| 160 |
|
| 161 |
-
// Assemble
|
| 162 |
nodeContent.appendChild(shapeInfo);
|
| 163 |
nodeContent.appendChild(paramsSection);
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
canvasNode.appendChild(nodeContent);
|
| 167 |
-
canvasNode.appendChild(
|
| 168 |
-
canvasNode.appendChild(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
// Add node to the canvas
|
| 171 |
canvas.appendChild(canvasNode);
|
|
@@ -175,10 +227,13 @@ function initializeDragAndDrop() {
|
|
| 175 |
|
| 176 |
// Add event listeners for node manipulation
|
| 177 |
canvasNode.addEventListener('mousedown', startDrag);
|
| 178 |
-
|
|
|
|
|
|
|
| 179 |
e.stopPropagation();
|
| 180 |
});
|
| 181 |
-
|
|
|
|
| 182 |
e.stopPropagation();
|
| 183 |
startConnection(canvasNode, e);
|
| 184 |
});
|
|
@@ -198,7 +253,11 @@ function initializeDragAndDrop() {
|
|
| 198 |
networkLayers.layers.push({
|
| 199 |
id: layerId,
|
| 200 |
type: nodeType,
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
});
|
| 203 |
|
| 204 |
// Notify about network changes
|
|
@@ -251,12 +310,19 @@ function initializeDragAndDrop() {
|
|
| 251 |
let x = e.clientX - canvasRect.left - offsetX;
|
| 252 |
let y = e.clientY - canvasRect.top - offsetY;
|
| 253 |
|
| 254 |
-
// Constrain to canvas
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
|
|
|
|
|
|
| 258 |
draggedNode.style.left = `${x}px`;
|
| 259 |
draggedNode.style.top = `${y}px`;
|
|
|
|
| 260 |
|
| 261 |
// Update node position in network layers
|
| 262 |
const nodeId = draggedNode.getAttribute('data-id');
|
|
@@ -509,365 +575,4 @@ function initializeDragAndDrop() {
|
|
| 509 |
const endY = targetPortRect.top + (targetPortRect.height / 2) - canvasRect.top;
|
| 510 |
|
| 511 |
// Create the connection
|
| 512 |
-
const pathId = `connection-${sourceId}-${targetId}
|
| 513 |
-
const connectionPath = document.createElementNS('http://www.w3.org/2000/svg', 'path');
|
| 514 |
-
connectionPath.setAttribute('id', pathId);
|
| 515 |
-
connectionPath.setAttribute('class', 'connection-line');
|
| 516 |
-
|
| 517 |
-
// Curved path (bezier)
|
| 518 |
-
const dx = Math.abs(endX - startX) * 0.7;
|
| 519 |
-
const path = `M ${startX} ${startY} C ${startX + dx} ${startY}, ${endX - dx} ${endY}, ${endX} ${endY}`;
|
| 520 |
-
connectionPath.setAttribute('d', path);
|
| 521 |
-
|
| 522 |
-
// Add connection to SVG container
|
| 523 |
-
svgContainer.appendChild(connectionPath);
|
| 524 |
-
|
| 525 |
-
// Add to connections
|
| 526 |
-
networkLayers.connections.push({
|
| 527 |
-
id: pathId,
|
| 528 |
-
source: sourceId,
|
| 529 |
-
target: targetId,
|
| 530 |
-
sourceType: sourceType,
|
| 531 |
-
targetType: targetType
|
| 532 |
-
});
|
| 533 |
-
|
| 534 |
-
// Update input and output shapes
|
| 535 |
-
updateNodeShapes(sourceId, targetId);
|
| 536 |
-
|
| 537 |
-
// Notify about connection
|
| 538 |
-
document.dispatchEvent(new CustomEvent('networkUpdated', {
|
| 539 |
-
detail: networkLayers
|
| 540 |
-
}));
|
| 541 |
-
}
|
| 542 |
-
|
| 543 |
-
// Clean up
|
| 544 |
-
removePortHighlights();
|
| 545 |
-
if (connectionLine) {
|
| 546 |
-
connectionLine.remove();
|
| 547 |
-
connectionLine = null;
|
| 548 |
-
}
|
| 549 |
-
isConnecting = false;
|
| 550 |
-
startNode = null;
|
| 551 |
-
}
|
| 552 |
-
|
| 553 |
-
// Update input and output shapes when connections are made
|
| 554 |
-
function updateNodeShapes(sourceId, targetId) {
|
| 555 |
-
const sourceNode = document.querySelector(`.canvas-node[data-id="${sourceId}"]`);
|
| 556 |
-
const targetNode = document.querySelector(`.canvas-node[data-id="${targetId}"]`);
|
| 557 |
-
|
| 558 |
-
if (sourceNode && targetNode) {
|
| 559 |
-
const sourceConfig = sourceNode.layerConfig;
|
| 560 |
-
const targetConfig = targetNode.layerConfig;
|
| 561 |
-
|
| 562 |
-
// Update the target's input shape based on the source's output shape
|
| 563 |
-
if (sourceConfig && targetConfig) {
|
| 564 |
-
// Calculate output shape based on node type
|
| 565 |
-
let outputShape;
|
| 566 |
-
switch (sourceNode.getAttribute('data-type')) {
|
| 567 |
-
case 'input':
|
| 568 |
-
outputShape = sourceConfig.shape;
|
| 569 |
-
break;
|
| 570 |
-
case 'hidden':
|
| 571 |
-
outputShape = [sourceConfig.units];
|
| 572 |
-
break;
|
| 573 |
-
case 'output':
|
| 574 |
-
outputShape = [sourceConfig.units];
|
| 575 |
-
break;
|
| 576 |
-
case 'conv':
|
| 577 |
-
// For Conv2D, the output shape depends on the input and parameters
|
| 578 |
-
// This is a simplified calculation
|
| 579 |
-
if (targetConfig.inputShape) {
|
| 580 |
-
const h = targetConfig.inputShape[0];
|
| 581 |
-
const w = targetConfig.inputShape[1];
|
| 582 |
-
const kh = sourceConfig.kernelSize[0];
|
| 583 |
-
const kw = sourceConfig.kernelSize[1];
|
| 584 |
-
const sh = sourceConfig.strides[0];
|
| 585 |
-
const sw = sourceConfig.strides[1];
|
| 586 |
-
const padding = sourceConfig.padding;
|
| 587 |
-
|
| 588 |
-
let outHeight, outWidth;
|
| 589 |
-
if (padding === 'same') {
|
| 590 |
-
outHeight = Math.ceil(h / sh);
|
| 591 |
-
outWidth = Math.ceil(w / sw);
|
| 592 |
-
} else { // 'valid'
|
| 593 |
-
outHeight = Math.ceil((h - kh + 1) / sh);
|
| 594 |
-
outWidth = Math.ceil((w - kw + 1) / sw);
|
| 595 |
-
}
|
| 596 |
-
|
| 597 |
-
outputShape = [outHeight, outWidth, sourceConfig.filters];
|
| 598 |
-
} else {
|
| 599 |
-
outputShape = ['?', '?', sourceConfig.filters];
|
| 600 |
-
}
|
| 601 |
-
break;
|
| 602 |
-
case 'pool':
|
| 603 |
-
// For pooling, also depends on the input and parameters
|
| 604 |
-
if (targetConfig.inputShape) {
|
| 605 |
-
const h = targetConfig.inputShape[0];
|
| 606 |
-
const w = targetConfig.inputShape[1];
|
| 607 |
-
const c = targetConfig.inputShape[2];
|
| 608 |
-
const ph = sourceConfig.poolSize[0];
|
| 609 |
-
const pw = sourceConfig.poolSize[1];
|
| 610 |
-
const sh = sourceConfig.strides[0];
|
| 611 |
-
const sw = sourceConfig.strides[1];
|
| 612 |
-
const padding = sourceConfig.padding;
|
| 613 |
-
|
| 614 |
-
let outHeight, outWidth;
|
| 615 |
-
if (padding === 'same') {
|
| 616 |
-
outHeight = Math.ceil(h / sh);
|
| 617 |
-
outWidth = Math.ceil(w / sw);
|
| 618 |
-
} else { // 'valid'
|
| 619 |
-
outHeight = Math.ceil((h - ph + 1) / sh);
|
| 620 |
-
outWidth = Math.ceil((w - pw + 1) / sw);
|
| 621 |
-
}
|
| 622 |
-
|
| 623 |
-
outputShape = [outHeight, outWidth, c];
|
| 624 |
-
} else {
|
| 625 |
-
outputShape = ['?', '?', '?'];
|
| 626 |
-
}
|
| 627 |
-
break;
|
| 628 |
-
case 'linear':
|
| 629 |
-
outputShape = [sourceConfig.outputFeatures];
|
| 630 |
-
break;
|
| 631 |
-
default:
|
| 632 |
-
outputShape = ['?', '?', '?'];
|
| 633 |
-
}
|
| 634 |
-
|
| 635 |
-
// Update the target's input shape
|
| 636 |
-
targetConfig.inputShape = outputShape;
|
| 637 |
-
|
| 638 |
-
// Update UI
|
| 639 |
-
updateNodeDisplayShapes(sourceNode, targetNode);
|
| 640 |
-
}
|
| 641 |
-
}
|
| 642 |
-
}
|
| 643 |
-
|
| 644 |
-
// Update the displayed shapes in the UI
|
| 645 |
-
function updateNodeDisplayShapes(sourceNode, targetNode) {
|
| 646 |
-
if (sourceNode && targetNode) {
|
| 647 |
-
const sourceType = sourceNode.getAttribute('data-type');
|
| 648 |
-
const targetType = targetNode.getAttribute('data-type');
|
| 649 |
-
const sourceConfig = sourceNode.layerConfig;
|
| 650 |
-
const targetConfig = targetNode.layerConfig;
|
| 651 |
-
|
| 652 |
-
// Update source node output shape display
|
| 653 |
-
const sourceOutputElem = sourceNode.querySelector('.output-shape');
|
| 654 |
-
if (sourceOutputElem && sourceConfig) {
|
| 655 |
-
let outputText;
|
| 656 |
-
switch (sourceType) {
|
| 657 |
-
case 'input':
|
| 658 |
-
outputText = `[${sourceConfig.shape.join(' × ')}]`;
|
| 659 |
-
break;
|
| 660 |
-
case 'hidden':
|
| 661 |
-
case 'output':
|
| 662 |
-
outputText = `[${sourceConfig.units}]`;
|
| 663 |
-
break;
|
| 664 |
-
case 'conv':
|
| 665 |
-
if (sourceConfig.outputShape) {
|
| 666 |
-
outputText = `[${sourceConfig.outputShape.join(' × ')}]`;
|
| 667 |
-
} else {
|
| 668 |
-
outputText = `[? × ? × ${sourceConfig.filters}]`;
|
| 669 |
-
}
|
| 670 |
-
break;
|
| 671 |
-
case 'pool':
|
| 672 |
-
if (sourceConfig.outputShape) {
|
| 673 |
-
outputText = `[${sourceConfig.outputShape.join(' × ')}]`;
|
| 674 |
-
} else {
|
| 675 |
-
outputText = 'Depends on input';
|
| 676 |
-
}
|
| 677 |
-
break;
|
| 678 |
-
case 'linear':
|
| 679 |
-
outputText = `[${sourceConfig.outputFeatures}]`;
|
| 680 |
-
break;
|
| 681 |
-
default:
|
| 682 |
-
outputText = 'Unknown';
|
| 683 |
-
}
|
| 684 |
-
sourceOutputElem.textContent = outputText;
|
| 685 |
-
}
|
| 686 |
-
|
| 687 |
-
// Update target node input shape display
|
| 688 |
-
const targetInputElem = targetNode.querySelector('.input-shape');
|
| 689 |
-
if (targetInputElem && targetConfig && targetConfig.inputShape) {
|
| 690 |
-
targetInputElem.textContent = `[${targetConfig.inputShape.join(' × ')}]`;
|
| 691 |
-
|
| 692 |
-
// Update parameters section
|
| 693 |
-
const targetParamsElem = targetNode.querySelector('.params-display');
|
| 694 |
-
if (targetParamsElem) {
|
| 695 |
-
// Calculate and display parameters
|
| 696 |
-
let paramsText = '';
|
| 697 |
-
switch (targetType) {
|
| 698 |
-
case 'hidden':
|
| 699 |
-
const inputUnits = Array.isArray(targetConfig.inputShape) ?
|
| 700 |
-
targetConfig.inputShape.reduce((acc, val) => acc * val, 1) :
|
| 701 |
-
targetConfig.inputShape;
|
| 702 |
-
|
| 703 |
-
const biasParams = targetConfig.useBias ? targetConfig.units : 0;
|
| 704 |
-
const totalParams = (inputUnits * targetConfig.units) + biasParams;
|
| 705 |
-
|
| 706 |
-
paramsText = `In: ${inputUnits}, Out: ${targetConfig.units}\nParams: ${totalParams.toLocaleString()}\nDropout: ${targetConfig.dropoutRate}`;
|
| 707 |
-
break;
|
| 708 |
-
case 'output':
|
| 709 |
-
const outInputUnits = Array.isArray(targetConfig.inputShape) ?
|
| 710 |
-
targetConfig.inputShape.reduce((acc, val) => acc * val, 1) :
|
| 711 |
-
targetConfig.inputShape;
|
| 712 |
-
|
| 713 |
-
const outBiasParams = targetConfig.useBias ? targetConfig.units : 0;
|
| 714 |
-
const outTotalParams = (outInputUnits * targetConfig.units) + outBiasParams;
|
| 715 |
-
|
| 716 |
-
paramsText = `In: ${outInputUnits}, Out: ${targetConfig.units}\nParams: ${outTotalParams.toLocaleString()}\nActivation: ${targetConfig.activation}`;
|
| 717 |
-
break;
|
| 718 |
-
case 'conv':
|
| 719 |
-
const channels = targetConfig.inputShape[2] || '?';
|
| 720 |
-
const kernelH = targetConfig.kernelSize[0];
|
| 721 |
-
const kernelW = targetConfig.kernelSize[1];
|
| 722 |
-
const kernelParams = kernelH * kernelW * channels * targetConfig.filters;
|
| 723 |
-
const convBiasParams = targetConfig.useBias ? targetConfig.filters : 0;
|
| 724 |
-
const convTotalParams = kernelParams + convBiasParams;
|
| 725 |
-
|
| 726 |
-
paramsText = `In: ${channels}, Out: ${targetConfig.filters}\nKernel: ${targetConfig.kernelSize.join('×')}\nStride: ${targetConfig.strides.join('×')}\nPadding: ${targetConfig.padding}\nParams: ${convTotalParams.toLocaleString()}`;
|
| 727 |
-
break;
|
| 728 |
-
case 'pool':
|
| 729 |
-
paramsText = `Pool size: ${targetConfig.poolSize.join('×')}\nStride: ${targetConfig.strides.join('×')}\nPadding: ${targetConfig.padding}\nParams: 0`;
|
| 730 |
-
break;
|
| 731 |
-
case 'linear':
|
| 732 |
-
const linearInputs = targetConfig.inputFeatures;
|
| 733 |
-
const linearBiasParams = targetConfig.useBias ? targetConfig.outputFeatures : 0;
|
| 734 |
-
const linearTotalParams = (linearInputs * targetConfig.outputFeatures) + linearBiasParams;
|
| 735 |
-
|
| 736 |
-
paramsText = `In: ${linearInputs}, Out: ${targetConfig.outputFeatures}\nParams: ${linearTotalParams.toLocaleString()}\nLearning Rate: ${targetConfig.learningRate}\nLoss: ${targetConfig.lossFunction}`;
|
| 737 |
-
break;
|
| 738 |
-
}
|
| 739 |
-
|
| 740 |
-
targetParamsElem.textContent = paramsText;
|
| 741 |
-
}
|
| 742 |
-
}
|
| 743 |
-
}
|
| 744 |
-
}
|
| 745 |
-
|
| 746 |
-
// Delete a node and its connections
|
| 747 |
-
function deleteNode(node) {
|
| 748 |
-
if (!node) return;
|
| 749 |
-
|
| 750 |
-
const nodeId = node.getAttribute('data-id');
|
| 751 |
-
|
| 752 |
-
// Remove all connections to/from this node
|
| 753 |
-
document.querySelectorAll(`.connection[data-source="${nodeId}"], .connection[data-target="${nodeId}"]`).forEach(conn => {
|
| 754 |
-
conn.parentNode.removeChild(conn);
|
| 755 |
-
});
|
| 756 |
-
|
| 757 |
-
// Remove from network layers
|
| 758 |
-
networkLayers.layers = networkLayers.layers.filter(layer => layer.id !== nodeId);
|
| 759 |
-
networkLayers.connections = networkLayers.connections.filter(conn =>
|
| 760 |
-
conn.source !== nodeId && conn.target !== nodeId
|
| 761 |
-
);
|
| 762 |
-
|
| 763 |
-
// Remove the node
|
| 764 |
-
node.parentNode.removeChild(node);
|
| 765 |
-
|
| 766 |
-
// Update layer connectivity
|
| 767 |
-
updateLayerConnectivity();
|
| 768 |
-
}
|
| 769 |
-
|
| 770 |
-
// Open layer editor modal
|
| 771 |
-
function openLayerEditor(node) {
|
| 772 |
-
if (!node) return;
|
| 773 |
-
|
| 774 |
-
const nodeId = node.getAttribute('data-id');
|
| 775 |
-
const nodeType = node.getAttribute('data-type');
|
| 776 |
-
const nodeName = node.getAttribute('data-name');
|
| 777 |
-
const dimensions = node.getAttribute('data-dimensions');
|
| 778 |
-
|
| 779 |
-
// Trigger custom event
|
| 780 |
-
const event = new CustomEvent('openLayerEditor', {
|
| 781 |
-
detail: { id: nodeId, type: nodeType, name: nodeName, dimensions: dimensions }
|
| 782 |
-
});
|
| 783 |
-
document.dispatchEvent(event);
|
| 784 |
-
}
|
| 785 |
-
|
| 786 |
-
// Update connections when nodes are moved
|
| 787 |
-
function updateConnections() {
|
| 788 |
-
const connections = document.querySelectorAll('.connection');
|
| 789 |
-
connections.forEach(connection => {
|
| 790 |
-
const sourceId = connection.getAttribute('data-source');
|
| 791 |
-
const targetId = connection.getAttribute('data-target');
|
| 792 |
-
|
| 793 |
-
const sourceNode = document.querySelector(`.canvas-node[data-id="${sourceId}"]`);
|
| 794 |
-
const targetNode = document.querySelector(`.canvas-node[data-id="${targetId}"]`);
|
| 795 |
-
|
| 796 |
-
if (sourceNode && targetNode) {
|
| 797 |
-
const sourcePort = sourceNode.querySelector('.port-out');
|
| 798 |
-
const targetPort = targetNode.querySelector('.port-in');
|
| 799 |
-
|
| 800 |
-
if (sourcePort && targetPort) {
|
| 801 |
-
const sourceRect = sourcePort.getBoundingClientRect();
|
| 802 |
-
const targetRect = targetPort.getBoundingClientRect();
|
| 803 |
-
const canvasRect = canvas.getBoundingClientRect();
|
| 804 |
-
|
| 805 |
-
const startX = sourceRect.left + sourceRect.width / 2 - canvasRect.left;
|
| 806 |
-
const startY = sourceRect.top + sourceRect.height / 2 - canvasRect.top;
|
| 807 |
-
const endX = targetRect.left + targetRect.width / 2 - canvasRect.left;
|
| 808 |
-
const endY = targetRect.top + targetRect.height / 2 - canvasRect.top;
|
| 809 |
-
|
| 810 |
-
const length = Math.sqrt(Math.pow(endX - startX, 2) + Math.pow(endY - startY, 2));
|
| 811 |
-
const angle = Math.atan2(endY - startY, endX - startX) * 180 / Math.PI;
|
| 812 |
-
|
| 813 |
-
connection.style.left = `${startX}px`;
|
| 814 |
-
connection.style.top = `${startY}px`;
|
| 815 |
-
connection.style.width = `${length}px`;
|
| 816 |
-
connection.style.transform = `rotate(${angle}deg)`;
|
| 817 |
-
}
|
| 818 |
-
} else {
|
| 819 |
-
// If either node is missing, remove the connection
|
| 820 |
-
if (connection.parentNode) {
|
| 821 |
-
connection.parentNode.removeChild(connection);
|
| 822 |
-
|
| 823 |
-
// Remove from the connections array
|
| 824 |
-
const connIndex = networkLayers.connections.findIndex(conn =>
|
| 825 |
-
conn.source === sourceId && conn.target === targetId
|
| 826 |
-
);
|
| 827 |
-
if (connIndex !== -1) {
|
| 828 |
-
networkLayers.connections.splice(connIndex, 1);
|
| 829 |
-
}
|
| 830 |
-
}
|
| 831 |
-
}
|
| 832 |
-
});
|
| 833 |
-
}
|
| 834 |
-
|
| 835 |
-
// Get the current network architecture
|
| 836 |
-
function getNetworkArchitecture() {
|
| 837 |
-
return networkLayers;
|
| 838 |
-
}
|
| 839 |
-
|
| 840 |
-
// Clear all nodes from the canvas
|
| 841 |
-
function clearAllNodes() {
|
| 842 |
-
// Clear all nodes and connections
|
| 843 |
-
document.querySelectorAll('.canvas-node, .connection').forEach(el => {
|
| 844 |
-
el.parentNode.removeChild(el);
|
| 845 |
-
});
|
| 846 |
-
|
| 847 |
-
// Reset network layers
|
| 848 |
-
networkLayers = {
|
| 849 |
-
layers: [],
|
| 850 |
-
connections: []
|
| 851 |
-
};
|
| 852 |
-
|
| 853 |
-
// Reset layer counter
|
| 854 |
-
window.neuralNetwork.resetLayerCounter();
|
| 855 |
-
|
| 856 |
-
// Show the canvas hint
|
| 857 |
-
const canvasHint = document.querySelector('.canvas-hint');
|
| 858 |
-
if (canvasHint) {
|
| 859 |
-
canvasHint.style.display = 'block';
|
| 860 |
-
}
|
| 861 |
-
|
| 862 |
-
// Trigger network updated event
|
| 863 |
-
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
|
| 864 |
-
document.dispatchEvent(event);
|
| 865 |
-
}
|
| 866 |
-
|
| 867 |
-
// Export functions
|
| 868 |
-
window.dragDrop = {
|
| 869 |
-
getNetworkArchitecture,
|
| 870 |
-
clearAllNodes,
|
| 871 |
-
updateConnections
|
| 872 |
-
};
|
| 873 |
-
}
|
|
|
|
| 16 |
connections: []
|
| 17 |
};
|
| 18 |
|
| 19 |
+
// Helper function to format numbers with K, M, B suffixes
|
| 20 |
+
function formatNumber(num) {
|
| 21 |
+
if (num === 0) return '0';
|
| 22 |
+
if (!num) return 'N/A';
|
| 23 |
+
|
| 24 |
+
if (num >= 1e9) return (num / 1e9).toFixed(2) + 'B';
|
| 25 |
+
if (num >= 1e6) return (num / 1e6).toFixed(2) + 'M';
|
| 26 |
+
if (num >= 1e3) return (num / 1e3).toFixed(2) + 'K';
|
| 27 |
+
return num.toString();
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
// Add event listeners to draggable items
|
| 31 |
nodeItems.forEach(item => {
|
| 32 |
item.addEventListener('dragstart', handleDragStart);
|
|
|
|
| 122 |
inputShape = 'Connect input';
|
| 123 |
outputShape = 'Depends on input';
|
| 124 |
// Create parameter string
|
| 125 |
+
parameters = `Kernel: ${nodeConfig.kernelSize.join('×')}\nStride: ${nodeConfig.strides.join('×')}\nPadding: ${nodeConfig.padding}`;
|
| 126 |
break;
|
| 127 |
case 'pool':
|
| 128 |
const poolCount = document.querySelectorAll('.canvas-node[data-type="pool"]').length;
|
|
|
|
| 138 |
parameters = 'N/A';
|
| 139 |
}
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
// Create node content
|
| 142 |
const nodeContent = document.createElement('div');
|
| 143 |
nodeContent.className = 'node-content';
|
|
|
|
| 153 |
// Add parameters section
|
| 154 |
const paramsSection = document.createElement('div');
|
| 155 |
paramsSection.className = 'params-section';
|
| 156 |
+
paramsSection.innerHTML = `
|
| 157 |
+
<div class="params-details">${parameters}</div>
|
| 158 |
+
<div class="node-parameters">Params: ${nodeConfig.parameters !== undefined ? formatNumber(nodeConfig.parameters) : '?'}</div>
|
| 159 |
+
`;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
// Assemble content
|
| 162 |
nodeContent.appendChild(shapeInfo);
|
| 163 |
nodeContent.appendChild(paramsSection);
|
| 164 |
|
| 165 |
+
// Add dimensions section to show shapes compactly
|
| 166 |
+
const dimensionsSection = document.createElement('div');
|
| 167 |
+
dimensionsSection.className = 'node-dimensions';
|
| 168 |
+
|
| 169 |
+
// Set dimensions text based on node type
|
| 170 |
+
let dimensionsText = '';
|
| 171 |
+
switch(nodeType) {
|
| 172 |
+
case 'input':
|
| 173 |
+
dimensionsText = nodeConfig.shape.join(' × ');
|
| 174 |
+
break;
|
| 175 |
+
case 'hidden':
|
| 176 |
+
case 'output':
|
| 177 |
+
dimensionsText = nodeConfig.units.toString();
|
| 178 |
+
break;
|
| 179 |
+
case 'conv':
|
| 180 |
+
if (nodeConfig.inputShape && nodeConfig.outputShape) {
|
| 181 |
+
dimensionsText = `${nodeConfig.inputShape.join('×')} → ${nodeConfig.outputShape.join('×')}`;
|
| 182 |
+
} else {
|
| 183 |
+
dimensionsText = `? → ${nodeConfig.filters} filters`;
|
| 184 |
+
}
|
| 185 |
+
break;
|
| 186 |
+
case 'pool':
|
| 187 |
+
if (nodeConfig.inputShape && nodeConfig.outputShape) {
|
| 188 |
+
dimensionsText = `${nodeConfig.inputShape.join('×')} → ${nodeConfig.outputShape.join('×')}`;
|
| 189 |
+
} else {
|
| 190 |
+
dimensionsText = `? → ?`;
|
| 191 |
+
}
|
| 192 |
+
break;
|
| 193 |
+
case 'linear':
|
| 194 |
+
dimensionsText = `${nodeConfig.inputFeatures} → ${nodeConfig.outputFeatures}`;
|
| 195 |
+
break;
|
| 196 |
+
}
|
| 197 |
+
dimensionsSection.textContent = dimensionsText;
|
| 198 |
+
|
| 199 |
+
// Add node title for clearer identification
|
| 200 |
+
const nodeTitle = document.createElement('div');
|
| 201 |
+
nodeTitle.className = 'node-title';
|
| 202 |
+
nodeTitle.textContent = nodeName;
|
| 203 |
+
|
| 204 |
+
// Add connection ports
|
| 205 |
+
const portIn = document.createElement('div');
|
| 206 |
+
portIn.className = 'node-port port-in';
|
| 207 |
+
|
| 208 |
+
const portOut = document.createElement('div');
|
| 209 |
+
portOut.className = 'node-port port-out';
|
| 210 |
+
|
| 211 |
+
// Assemble the node with the new structure
|
| 212 |
+
canvasNode.appendChild(nodeTitle);
|
| 213 |
+
canvasNode.appendChild(dimensionsSection);
|
| 214 |
canvasNode.appendChild(nodeContent);
|
| 215 |
+
canvasNode.appendChild(portIn);
|
| 216 |
+
canvasNode.appendChild(portOut);
|
| 217 |
+
|
| 218 |
+
// Store node data attributes for easier access
|
| 219 |
+
canvasNode.setAttribute('data-name', nodeName);
|
| 220 |
+
canvasNode.setAttribute('data-dimensions', dimensionsText);
|
| 221 |
|
| 222 |
// Add node to the canvas
|
| 223 |
canvas.appendChild(canvasNode);
|
|
|
|
| 227 |
|
| 228 |
// Add event listeners for node manipulation
|
| 229 |
canvasNode.addEventListener('mousedown', startDrag);
|
| 230 |
+
|
| 231 |
+
// Update port event listeners for the new class names
|
| 232 |
+
portIn.addEventListener('mousedown', (e) => {
|
| 233 |
e.stopPropagation();
|
| 234 |
});
|
| 235 |
+
|
| 236 |
+
portOut.addEventListener('mousedown', (e) => {
|
| 237 |
e.stopPropagation();
|
| 238 |
startConnection(canvasNode, e);
|
| 239 |
});
|
|
|
|
| 253 |
networkLayers.layers.push({
|
| 254 |
id: layerId,
|
| 255 |
type: nodeType,
|
| 256 |
+
name: nodeName,
|
| 257 |
+
position: { x, y },
|
| 258 |
+
dimensions: dimensionsText,
|
| 259 |
+
config: nodeConfig,
|
| 260 |
+
parameters: nodeConfig.parameters || 0
|
| 261 |
});
|
| 262 |
|
| 263 |
// Notify about network changes
|
|
|
|
| 310 |
let x = e.clientX - canvasRect.left - offsetX;
|
| 311 |
let y = e.clientY - canvasRect.top - offsetY;
|
| 312 |
|
| 313 |
+
// Constrain to canvas with better boundary checks
|
| 314 |
+
const nodeWidth = draggedNode.offsetWidth || 150; // Default width if not set
|
| 315 |
+
const nodeHeight = draggedNode.offsetHeight || 100; // Default height if not set
|
| 316 |
+
|
| 317 |
+
// Ensure the node stays completely within the canvas
|
| 318 |
+
x = Math.max(0, Math.min(canvasRect.width - nodeWidth, x));
|
| 319 |
+
y = Math.max(0, Math.min(canvasRect.height - nodeHeight, y));
|
| 320 |
|
| 321 |
+
// Apply position with fixed sizing to prevent layout expansion
|
| 322 |
+
draggedNode.style.position = 'absolute';
|
| 323 |
draggedNode.style.left = `${x}px`;
|
| 324 |
draggedNode.style.top = `${y}px`;
|
| 325 |
+
draggedNode.style.width = `${nodeWidth}px`; // Maintain fixed width
|
| 326 |
|
| 327 |
// Update node position in network layers
|
| 328 |
const nodeId = draggedNode.getAttribute('data-id');
|
|
|
|
| 575 |
const endY = targetPortRect.top + (targetPortRect.height / 2) - canvasRect.top;
|
| 576 |
|
| 577 |
// Create the connection
|
| 578 |
+
const pathId = `connection-${sourceId}-${targetId}`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
js/main.js
CHANGED
|
@@ -405,7 +405,20 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 405 |
|
| 406 |
case 'conv':
|
| 407 |
// Convolutional layer parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
layerForm.innerHTML += `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
<div class="form-group">
|
| 410 |
<label>Filters:</label>
|
| 411 |
<input type="number" id="conv-filters" min="1" value="${layerConfig.filters}" placeholder="Number of filters">
|
|
@@ -442,12 +455,92 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 442 |
<option value="leaky_relu" ${layerConfig.activation === 'leaky_relu' ? 'selected' : ''}>Leaky ReLU</option>
|
| 443 |
</select>
|
| 444 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
`;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
break;
|
| 447 |
|
| 448 |
case 'pool':
|
| 449 |
// Pooling layer parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
layerForm.innerHTML += `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
<div class="form-group">
|
| 452 |
<label>Pool Size:</label>
|
| 453 |
<div class="form-row">
|
|
@@ -476,7 +569,61 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 476 |
<option value="avg">Average Pooling</option>
|
| 477 |
</select>
|
| 478 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
`;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
break;
|
| 481 |
|
| 482 |
case 'linear':
|
|
@@ -591,28 +738,169 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 591 |
const values = {};
|
| 592 |
const inputs = form.querySelectorAll('input, select');
|
| 593 |
inputs.forEach(input => {
|
| 594 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
});
|
| 596 |
|
| 597 |
// Update node configuration
|
| 598 |
-
node.layerConfig = {
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 616 |
|
| 617 |
// Update node title
|
| 618 |
const nodeTitle = node.querySelector('.node-title');
|
|
@@ -623,37 +911,55 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 623 |
// Update node data attribute
|
| 624 |
node.setAttribute('data-name', nodeType.charAt(0).toUpperCase() + nodeType.slice(1));
|
| 625 |
|
| 626 |
-
// Update dimensions based on layer type
|
| 627 |
let dimensions = '';
|
| 628 |
switch (nodeType) {
|
| 629 |
case 'input':
|
| 630 |
-
dimensions =
|
| 631 |
break;
|
| 632 |
|
| 633 |
case 'hidden':
|
| 634 |
case 'output':
|
| 635 |
-
dimensions =
|
| 636 |
break;
|
| 637 |
|
| 638 |
case 'conv':
|
| 639 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
break;
|
| 641 |
|
| 642 |
case 'pool':
|
| 643 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 644 |
break;
|
| 645 |
|
| 646 |
case 'linear':
|
| 647 |
-
dimensions =
|
| 648 |
break;
|
| 649 |
}
|
| 650 |
|
| 651 |
-
// Update node dimensions
|
| 652 |
const nodeDimensions = node.querySelector('.node-dimensions');
|
| 653 |
if (nodeDimensions) {
|
| 654 |
nodeDimensions.textContent = dimensions;
|
| 655 |
}
|
| 656 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 657 |
// Update node data attribute
|
| 658 |
node.setAttribute('data-dimensions', dimensions);
|
| 659 |
|
|
@@ -664,11 +970,96 @@ document.addEventListener('DOMContentLoaded', () => {
|
|
| 664 |
if (layerIndex !== -1) {
|
| 665 |
networkLayers.layers[layerIndex].name = nodeType.charAt(0).toUpperCase() + nodeType.slice(1);
|
| 666 |
networkLayers.layers[layerIndex].dimensions = dimensions;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
}
|
| 668 |
|
| 669 |
// Trigger network updated event
|
| 670 |
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
|
| 671 |
document.dispatchEvent(event);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
}
|
| 673 |
|
| 674 |
// Handle sample selection
|
|
|
|
| 405 |
|
| 406 |
case 'conv':
|
| 407 |
// Convolutional layer parameters
|
| 408 |
+
// Get input and output shapes - may be calculated or null at first
|
| 409 |
+
const inputShape = layerConfig.inputShape || ['?', '?', '?'];
|
| 410 |
+
const outputShape = layerConfig.outputShape || ['?', '?', layerConfig.filters];
|
| 411 |
+
|
| 412 |
layerForm.innerHTML += `
|
| 413 |
+
<div class="form-group">
|
| 414 |
+
<label>Input Shape:</label>
|
| 415 |
+
<div class="form-row">
|
| 416 |
+
<input type="number" id="conv-input-h" min="1" value="${inputShape[0] === '?' ? 28 : inputShape[0]}" placeholder="Height">
|
| 417 |
+
<input type="number" id="conv-input-w" min="1" value="${inputShape[1] === '?' ? 28 : inputShape[1]}" placeholder="Width">
|
| 418 |
+
<input type="number" id="conv-input-c" min="1" value="${inputShape[2] === '?' ? 1 : inputShape[2]}" placeholder="Channels">
|
| 419 |
+
</div>
|
| 420 |
+
<small>Input dimensions: H × W × C</small>
|
| 421 |
+
</div>
|
| 422 |
<div class="form-group">
|
| 423 |
<label>Filters:</label>
|
| 424 |
<input type="number" id="conv-filters" min="1" value="${layerConfig.filters}" placeholder="Number of filters">
|
|
|
|
| 455 |
<option value="leaky_relu" ${layerConfig.activation === 'leaky_relu' ? 'selected' : ''}>Leaky ReLU</option>
|
| 456 |
</select>
|
| 457 |
</div>
|
| 458 |
+
<div class="form-group">
|
| 459 |
+
<label>Output Shape (calculated):</label>
|
| 460 |
+
<div class="output-shape-display" id="conv-output-shape">
|
| 461 |
+
[${outputShape.join(' × ')}]
|
| 462 |
+
</div>
|
| 463 |
+
<small>Output dimensions: H × W × Filters</small>
|
| 464 |
+
</div>
|
| 465 |
+
<div class="form-group">
|
| 466 |
+
<label>Parameters (calculated):</label>
|
| 467 |
+
<div class="parameters-display" id="conv-parameters">
|
| 468 |
+
Calculating...
|
| 469 |
+
</div>
|
| 470 |
+
</div>
|
| 471 |
`;
|
| 472 |
+
|
| 473 |
+
// Add event listeners to calculate output shape and parameters in real-time
|
| 474 |
+
setTimeout(() => {
|
| 475 |
+
const inputH = document.getElementById('conv-input-h');
|
| 476 |
+
const inputW = document.getElementById('conv-input-w');
|
| 477 |
+
const inputC = document.getElementById('conv-input-c');
|
| 478 |
+
const filters = document.getElementById('conv-filters');
|
| 479 |
+
const kernelH = document.getElementById('kernel-size-h');
|
| 480 |
+
const kernelW = document.getElementById('kernel-size-w');
|
| 481 |
+
const strideH = document.getElementById('stride-h');
|
| 482 |
+
const strideW = document.getElementById('stride-w');
|
| 483 |
+
const paddingType = document.getElementById('padding-type');
|
| 484 |
+
const outputShapeDisplay = document.getElementById('conv-output-shape');
|
| 485 |
+
const parametersDisplay = document.getElementById('conv-parameters');
|
| 486 |
+
|
| 487 |
+
const updateOutputShape = () => {
|
| 488 |
+
const h = parseInt(inputH.value);
|
| 489 |
+
const w = parseInt(inputW.value);
|
| 490 |
+
const c = parseInt(inputC.value);
|
| 491 |
+
const f = parseInt(filters.value);
|
| 492 |
+
const kh = parseInt(kernelH.value);
|
| 493 |
+
const kw = parseInt(kernelW.value);
|
| 494 |
+
const sh = parseInt(strideH.value);
|
| 495 |
+
const sw = parseInt(strideW.value);
|
| 496 |
+
const padding = paddingType.value;
|
| 497 |
+
|
| 498 |
+
// Calculate output dimensions
|
| 499 |
+
const pH = padding === 'same' ? Math.floor(kh / 2) : 0;
|
| 500 |
+
const pW = padding === 'same' ? Math.floor(kw / 2) : 0;
|
| 501 |
+
|
| 502 |
+
const outH = Math.floor((h - kh + 2 * pH) / sh) + 1;
|
| 503 |
+
const outW = Math.floor((w - kw + 2 * pW) / sw) + 1;
|
| 504 |
+
|
| 505 |
+
// Update output shape display
|
| 506 |
+
outputShapeDisplay.textContent = `[${outH} × ${outW} × ${f}]`;
|
| 507 |
+
|
| 508 |
+
// Calculate parameters
|
| 509 |
+
const params = kh * kw * c * f + f; // weights + bias
|
| 510 |
+
parametersDisplay.textContent = formatNumber(params);
|
| 511 |
+
|
| 512 |
+
// Store for saving
|
| 513 |
+
layerConfig.inputShape = [h, w, c];
|
| 514 |
+
layerConfig.outputShape = [outH, outW, f];
|
| 515 |
+
layerConfig.parameters = params;
|
| 516 |
+
};
|
| 517 |
+
|
| 518 |
+
// Attach event listeners to all inputs
|
| 519 |
+
[inputH, inputW, inputC, filters, kernelH, kernelW, strideH, strideW, paddingType].forEach(
|
| 520 |
+
input => input.addEventListener('input', updateOutputShape)
|
| 521 |
+
);
|
| 522 |
+
|
| 523 |
+
// Initialize values
|
| 524 |
+
updateOutputShape();
|
| 525 |
+
}, 100);
|
| 526 |
break;
|
| 527 |
|
| 528 |
case 'pool':
|
| 529 |
// Pooling layer parameters
|
| 530 |
+
// Get input and output shapes
|
| 531 |
+
const poolInputShape = layerConfig.inputShape || ['?', '?', '?'];
|
| 532 |
+
const poolOutputShape = layerConfig.outputShape || ['?', '?', '?'];
|
| 533 |
+
|
| 534 |
layerForm.innerHTML += `
|
| 535 |
+
<div class="form-group">
|
| 536 |
+
<label>Input Shape:</label>
|
| 537 |
+
<div class="form-row">
|
| 538 |
+
<input type="number" id="pool-input-h" min="1" value="${poolInputShape[0] === '?' ? 28 : poolInputShape[0]}" placeholder="Height">
|
| 539 |
+
<input type="number" id="pool-input-w" min="1" value="${poolInputShape[1] === '?' ? 28 : poolInputShape[1]}" placeholder="Width">
|
| 540 |
+
<input type="number" id="pool-input-c" min="1" value="${poolInputShape[2] === '?' ? 1 : poolInputShape[2]}" placeholder="Channels">
|
| 541 |
+
</div>
|
| 542 |
+
<small>Input dimensions: H × W × C</small>
|
| 543 |
+
</div>
|
| 544 |
<div class="form-group">
|
| 545 |
<label>Pool Size:</label>
|
| 546 |
<div class="form-row">
|
|
|
|
| 569 |
<option value="avg">Average Pooling</option>
|
| 570 |
</select>
|
| 571 |
</div>
|
| 572 |
+
<div class="form-group">
|
| 573 |
+
<label>Output Shape (calculated):</label>
|
| 574 |
+
<div class="output-shape-display" id="pool-output-shape">
|
| 575 |
+
[${poolOutputShape.join(' × ')}]
|
| 576 |
+
</div>
|
| 577 |
+
<small>Output dimensions: H × W × C</small>
|
| 578 |
+
</div>
|
| 579 |
`;
|
| 580 |
+
|
| 581 |
+
// Add event listeners to calculate output shape in real-time
|
| 582 |
+
setTimeout(() => {
|
| 583 |
+
const inputH = document.getElementById('pool-input-h');
|
| 584 |
+
const inputW = document.getElementById('pool-input-w');
|
| 585 |
+
const inputC = document.getElementById('pool-input-c');
|
| 586 |
+
const poolH = document.getElementById('pool-size-h');
|
| 587 |
+
const poolW = document.getElementById('pool-size-w');
|
| 588 |
+
const strideH = document.getElementById('pool-stride-h');
|
| 589 |
+
const strideW = document.getElementById('pool-stride-w');
|
| 590 |
+
const paddingType = document.getElementById('pool-padding');
|
| 591 |
+
const outputShapeDisplay = document.getElementById('pool-output-shape');
|
| 592 |
+
|
| 593 |
+
const updateOutputShape = () => {
|
| 594 |
+
const h = parseInt(inputH.value);
|
| 595 |
+
const w = parseInt(inputW.value);
|
| 596 |
+
const c = parseInt(inputC.value);
|
| 597 |
+
const ph = parseInt(poolH.value);
|
| 598 |
+
const pw = parseInt(poolW.value);
|
| 599 |
+
const sh = parseInt(strideH.value);
|
| 600 |
+
const sw = parseInt(strideW.value);
|
| 601 |
+
const padding = paddingType.value;
|
| 602 |
+
|
| 603 |
+
// Calculate output dimensions
|
| 604 |
+
const padH = padding === 'same' ? Math.floor(ph / 2) : 0;
|
| 605 |
+
const padW = padding === 'same' ? Math.floor(pw / 2) : 0;
|
| 606 |
+
|
| 607 |
+
const outH = Math.floor((h - ph + 2 * padH) / sh) + 1;
|
| 608 |
+
const outW = Math.floor((w - pw + 2 * padW) / sw) + 1;
|
| 609 |
+
|
| 610 |
+
// Update output shape display
|
| 611 |
+
outputShapeDisplay.textContent = `[${outH} × ${outW} × ${c}]`;
|
| 612 |
+
|
| 613 |
+
// Store for saving
|
| 614 |
+
layerConfig.inputShape = [h, w, c];
|
| 615 |
+
layerConfig.outputShape = [outH, outW, c];
|
| 616 |
+
layerConfig.parameters = 0; // Pooling has no parameters
|
| 617 |
+
};
|
| 618 |
+
|
| 619 |
+
// Attach event listeners to all inputs
|
| 620 |
+
[inputH, inputW, inputC, poolH, poolW, strideH, strideW, paddingType].forEach(
|
| 621 |
+
input => input.addEventListener('input', updateOutputShape)
|
| 622 |
+
);
|
| 623 |
+
|
| 624 |
+
// Initialize values
|
| 625 |
+
updateOutputShape();
|
| 626 |
+
}, 100);
|
| 627 |
break;
|
| 628 |
|
| 629 |
case 'linear':
|
|
|
|
| 738 |
const values = {};
|
| 739 |
const inputs = form.querySelectorAll('input, select');
|
| 740 |
inputs.forEach(input => {
|
| 741 |
+
if (input.type === 'checkbox') {
|
| 742 |
+
values[input.id] = input.checked;
|
| 743 |
+
} else {
|
| 744 |
+
values[input.id] = input.value;
|
| 745 |
+
}
|
| 746 |
});
|
| 747 |
|
| 748 |
// Update node configuration
|
| 749 |
+
node.layerConfig = node.layerConfig || {};
|
| 750 |
+
const layerConfig = node.layerConfig;
|
| 751 |
+
|
| 752 |
+
switch (nodeType) {
|
| 753 |
+
case 'input':
|
| 754 |
+
layerConfig.shape = [
|
| 755 |
+
parseInt(values['input-height']) || 28,
|
| 756 |
+
parseInt(values['input-width']) || 28,
|
| 757 |
+
parseInt(values['input-channels']) || 1
|
| 758 |
+
];
|
| 759 |
+
layerConfig.batchSize = parseInt(values['batch-size']) || 32;
|
| 760 |
+
layerConfig.outputShape = layerConfig.shape;
|
| 761 |
+
layerConfig.parameters = 0;
|
| 762 |
+
break;
|
| 763 |
+
|
| 764 |
+
case 'hidden':
|
| 765 |
+
layerConfig.units = parseInt(values['hidden-units']) || 128;
|
| 766 |
+
layerConfig.activation = values['hidden-activation'] || 'relu';
|
| 767 |
+
layerConfig.dropoutRate = parseFloat(values['dropout-rate']) || 0.2;
|
| 768 |
+
layerConfig.useBias = values['use-bias'] === true;
|
| 769 |
+
layerConfig.outputShape = [layerConfig.units];
|
| 770 |
+
|
| 771 |
+
// Calculate parameters if input shape is available
|
| 772 |
+
if (layerConfig.inputShape) {
|
| 773 |
+
const inputUnits = Array.isArray(layerConfig.inputShape) ?
|
| 774 |
+
layerConfig.inputShape.reduce((a, b) => a * b, 1) : layerConfig.inputShape;
|
| 775 |
+
layerConfig.parameters = (inputUnits * layerConfig.units) + (layerConfig.useBias ? layerConfig.units : 0);
|
| 776 |
+
}
|
| 777 |
+
break;
|
| 778 |
+
|
| 779 |
+
case 'output':
|
| 780 |
+
layerConfig.units = parseInt(values['output-units']) || 10;
|
| 781 |
+
layerConfig.activation = values['output-activation'] || 'softmax';
|
| 782 |
+
layerConfig.useBias = values['output-use-bias'] === true;
|
| 783 |
+
layerConfig.outputShape = [layerConfig.units];
|
| 784 |
+
|
| 785 |
+
// Calculate parameters if input shape is available
|
| 786 |
+
if (layerConfig.inputShape) {
|
| 787 |
+
const inputUnits = Array.isArray(layerConfig.inputShape) ?
|
| 788 |
+
layerConfig.inputShape.reduce((a, b) => a * b, 1) : layerConfig.inputShape;
|
| 789 |
+
layerConfig.parameters = (inputUnits * layerConfig.units) + (layerConfig.useBias ? layerConfig.units : 0);
|
| 790 |
+
}
|
| 791 |
+
break;
|
| 792 |
+
|
| 793 |
+
case 'conv':
|
| 794 |
+
// Process input shape if available in form
|
| 795 |
+
if (values['conv-input-h'] && values['conv-input-w'] && values['conv-input-c']) {
|
| 796 |
+
layerConfig.inputShape = [
|
| 797 |
+
parseInt(values['conv-input-h']) || 28,
|
| 798 |
+
parseInt(values['conv-input-w']) || 28,
|
| 799 |
+
parseInt(values['conv-input-c']) || 1
|
| 800 |
+
];
|
| 801 |
+
}
|
| 802 |
+
|
| 803 |
+
// Process configuration
|
| 804 |
+
layerConfig.filters = parseInt(values['conv-filters']) || 32;
|
| 805 |
+
layerConfig.kernelSize = [
|
| 806 |
+
parseInt(values['kernel-size-h']) || 3,
|
| 807 |
+
parseInt(values['kernel-size-w']) || 3
|
| 808 |
+
];
|
| 809 |
+
layerConfig.strides = [
|
| 810 |
+
parseInt(values['stride-h']) || 1,
|
| 811 |
+
parseInt(values['stride-w']) || 1
|
| 812 |
+
];
|
| 813 |
+
layerConfig.padding = values['padding-type'] || 'valid';
|
| 814 |
+
layerConfig.activation = values['conv-activation'] || 'relu';
|
| 815 |
+
layerConfig.useBias = true; // Default to true for CNN
|
| 816 |
+
|
| 817 |
+
// Calculate output shape if input shape is available
|
| 818 |
+
if (layerConfig.inputShape) {
|
| 819 |
+
const padding = layerConfig.padding === 'same' ?
|
| 820 |
+
Math.floor(layerConfig.kernelSize[0] / 2) : 0;
|
| 821 |
+
|
| 822 |
+
const outH = Math.floor(
|
| 823 |
+
(layerConfig.inputShape[0] - layerConfig.kernelSize[0] + 2 * padding) /
|
| 824 |
+
layerConfig.strides[0]
|
| 825 |
+
) + 1;
|
| 826 |
+
|
| 827 |
+
const outW = Math.floor(
|
| 828 |
+
(layerConfig.inputShape[1] - layerConfig.kernelSize[1] + 2 * padding) /
|
| 829 |
+
layerConfig.strides[1]
|
| 830 |
+
) + 1;
|
| 831 |
+
|
| 832 |
+
layerConfig.outputShape = [outH, outW, layerConfig.filters];
|
| 833 |
+
|
| 834 |
+
// Calculate parameters
|
| 835 |
+
const kernelParams = layerConfig.kernelSize[0] * layerConfig.kernelSize[1] *
|
| 836 |
+
layerConfig.inputShape[2] * layerConfig.filters;
|
| 837 |
+
const biasParams = layerConfig.filters;
|
| 838 |
+
layerConfig.parameters = kernelParams + biasParams;
|
| 839 |
+
}
|
| 840 |
+
break;
|
| 841 |
+
|
| 842 |
+
case 'pool':
|
| 843 |
+
// Process input shape if available in form
|
| 844 |
+
if (values['pool-input-h'] && values['pool-input-w'] && values['pool-input-c']) {
|
| 845 |
+
layerConfig.inputShape = [
|
| 846 |
+
parseInt(values['pool-input-h']) || 28,
|
| 847 |
+
parseInt(values['pool-input-w']) || 28,
|
| 848 |
+
parseInt(values['pool-input-c']) || 1
|
| 849 |
+
];
|
| 850 |
+
}
|
| 851 |
+
|
| 852 |
+
// Process configuration
|
| 853 |
+
layerConfig.poolSize = [
|
| 854 |
+
parseInt(values['pool-size-h']) || 2,
|
| 855 |
+
parseInt(values['pool-size-w']) || 2
|
| 856 |
+
];
|
| 857 |
+
layerConfig.strides = [
|
| 858 |
+
parseInt(values['pool-stride-h']) || 2,
|
| 859 |
+
parseInt(values['pool-stride-w']) || 2
|
| 860 |
+
];
|
| 861 |
+
layerConfig.padding = values['pool-padding'] || 'valid';
|
| 862 |
+
layerConfig.poolType = values['pool-type'] || 'max';
|
| 863 |
+
|
| 864 |
+
// Calculate output shape if input shape is available
|
| 865 |
+
if (layerConfig.inputShape) {
|
| 866 |
+
const poolPadding = layerConfig.padding === 'same' ?
|
| 867 |
+
Math.floor(layerConfig.poolSize[0] / 2) : 0;
|
| 868 |
+
|
| 869 |
+
const poolOutH = Math.floor(
|
| 870 |
+
(layerConfig.inputShape[0] - layerConfig.poolSize[0] + 2 * poolPadding) /
|
| 871 |
+
layerConfig.strides[0]
|
| 872 |
+
) + 1;
|
| 873 |
+
|
| 874 |
+
const poolOutW = Math.floor(
|
| 875 |
+
(layerConfig.inputShape[1] - layerConfig.poolSize[1] + 2 * poolPadding) /
|
| 876 |
+
layerConfig.strides[1]
|
| 877 |
+
) + 1;
|
| 878 |
+
|
| 879 |
+
layerConfig.outputShape = [poolOutH, poolOutW, layerConfig.inputShape[2]];
|
| 880 |
+
}
|
| 881 |
+
|
| 882 |
+
// Pooling has no parameters
|
| 883 |
+
layerConfig.parameters = 0;
|
| 884 |
+
break;
|
| 885 |
+
|
| 886 |
+
case 'linear':
|
| 887 |
+
layerConfig.inputFeatures = parseInt(values['input-features']) || 1;
|
| 888 |
+
layerConfig.outputFeatures = parseInt(values['output-features']) || 1;
|
| 889 |
+
layerConfig.useBias = values['linear-use-bias'] === true;
|
| 890 |
+
layerConfig.learningRate = parseFloat(values['learning-rate-slider']) || 0.01;
|
| 891 |
+
layerConfig.activation = values['linear-activation'] || 'linear';
|
| 892 |
+
layerConfig.optimizer = values['optimizer'] || 'sgd';
|
| 893 |
+
layerConfig.lossFunction = values['loss-function'] || 'mse';
|
| 894 |
+
layerConfig.inputShape = [layerConfig.inputFeatures];
|
| 895 |
+
layerConfig.outputShape = [layerConfig.outputFeatures];
|
| 896 |
+
|
| 897 |
+
// Calculate parameters
|
| 898 |
+
layerConfig.parameters = layerConfig.inputFeatures * layerConfig.outputFeatures;
|
| 899 |
+
if (layerConfig.useBias) {
|
| 900 |
+
layerConfig.parameters += layerConfig.outputFeatures;
|
| 901 |
+
}
|
| 902 |
+
break;
|
| 903 |
+
}
|
| 904 |
|
| 905 |
// Update node title
|
| 906 |
const nodeTitle = node.querySelector('.node-title');
|
|
|
|
| 911 |
// Update node data attribute
|
| 912 |
node.setAttribute('data-name', nodeType.charAt(0).toUpperCase() + nodeType.slice(1));
|
| 913 |
|
| 914 |
+
// Update dimensions and parameter display based on layer type
|
| 915 |
let dimensions = '';
|
| 916 |
switch (nodeType) {
|
| 917 |
case 'input':
|
| 918 |
+
dimensions = layerConfig.shape.join(' × ');
|
| 919 |
break;
|
| 920 |
|
| 921 |
case 'hidden':
|
| 922 |
case 'output':
|
| 923 |
+
dimensions = layerConfig.units.toString();
|
| 924 |
break;
|
| 925 |
|
| 926 |
case 'conv':
|
| 927 |
+
if (layerConfig.inputShape && layerConfig.outputShape) {
|
| 928 |
+
// Show input -> output shape transformation
|
| 929 |
+
dimensions = `${layerConfig.inputShape[0]}×${layerConfig.inputShape[1]}×${layerConfig.inputShape[2]} → ${layerConfig.outputShape[0]}×${layerConfig.outputShape[1]}×${layerConfig.outputShape[2]}`;
|
| 930 |
+
} else {
|
| 931 |
+
dimensions = `? → ${layerConfig.filters} filters`;
|
| 932 |
+
}
|
| 933 |
break;
|
| 934 |
|
| 935 |
case 'pool':
|
| 936 |
+
if (layerConfig.inputShape && layerConfig.outputShape) {
|
| 937 |
+
// Show input -> output shape transformation
|
| 938 |
+
dimensions = `${layerConfig.inputShape[0]}×${layerConfig.inputShape[1]}×${layerConfig.inputShape[2]} → ${layerConfig.outputShape[0]}×${layerConfig.outputShape[1]}×${layerConfig.outputShape[2]}`;
|
| 939 |
+
} else {
|
| 940 |
+
dimensions = `? → ?`;
|
| 941 |
+
}
|
| 942 |
break;
|
| 943 |
|
| 944 |
case 'linear':
|
| 945 |
+
dimensions = `${layerConfig.inputFeatures} → ${layerConfig.outputFeatures}`;
|
| 946 |
break;
|
| 947 |
}
|
| 948 |
|
| 949 |
+
// Update node dimensions display
|
| 950 |
const nodeDimensions = node.querySelector('.node-dimensions');
|
| 951 |
if (nodeDimensions) {
|
| 952 |
nodeDimensions.textContent = dimensions;
|
| 953 |
}
|
| 954 |
|
| 955 |
+
// Update parameters display if available
|
| 956 |
+
const nodeParameters = node.querySelector('.node-parameters');
|
| 957 |
+
if (nodeParameters && layerConfig.parameters !== undefined) {
|
| 958 |
+
nodeParameters.textContent = `Params: ${formatNumber(layerConfig.parameters)}`;
|
| 959 |
+
} else if (nodeParameters) {
|
| 960 |
+
nodeParameters.textContent = 'Params: ?';
|
| 961 |
+
}
|
| 962 |
+
|
| 963 |
// Update node data attribute
|
| 964 |
node.setAttribute('data-dimensions', dimensions);
|
| 965 |
|
|
|
|
| 970 |
if (layerIndex !== -1) {
|
| 971 |
networkLayers.layers[layerIndex].name = nodeType.charAt(0).toUpperCase() + nodeType.slice(1);
|
| 972 |
networkLayers.layers[layerIndex].dimensions = dimensions;
|
| 973 |
+
networkLayers.layers[layerIndex].config = layerConfig;
|
| 974 |
+
|
| 975 |
+
// Add parameter count to the layer
|
| 976 |
+
networkLayers.layers[layerIndex].parameters = layerConfig.parameters;
|
| 977 |
}
|
| 978 |
|
| 979 |
// Trigger network updated event
|
| 980 |
const event = new CustomEvent('networkUpdated', { detail: networkLayers });
|
| 981 |
document.dispatchEvent(event);
|
| 982 |
+
|
| 983 |
+
// Update connected nodes to propagate shape changes
|
| 984 |
+
updateNodeConnections(node, layerId);
|
| 985 |
+
}
|
| 986 |
+
|
| 987 |
+
// Helper function to update connections between nodes when shapes change
|
| 988 |
+
function updateNodeConnections(sourceNode, sourceId) {
|
| 989 |
+
// Find all connections from this source node
|
| 990 |
+
const connections = document.querySelectorAll(`.connection[data-source="${sourceId}"]`);
|
| 991 |
+
|
| 992 |
+
connections.forEach(connection => {
|
| 993 |
+
const targetId = connection.getAttribute('data-target');
|
| 994 |
+
const targetNode = document.querySelector(`.canvas-node[data-id="${targetId}"]`);
|
| 995 |
+
|
| 996 |
+
if (targetNode && sourceNode.layerConfig && sourceNode.layerConfig.outputShape) {
|
| 997 |
+
// Update target node with source node's output shape as its input shape
|
| 998 |
+
if (!targetNode.layerConfig) {
|
| 999 |
+
targetNode.layerConfig = {};
|
| 1000 |
+
}
|
| 1001 |
+
|
| 1002 |
+
targetNode.layerConfig.inputShape = sourceNode.layerConfig.outputShape;
|
| 1003 |
+
|
| 1004 |
+
// Update parameter calculation
|
| 1005 |
+
window.neuralNetwork.calculateParameters(
|
| 1006 |
+
targetNode.getAttribute('data-type'),
|
| 1007 |
+
targetNode.layerConfig,
|
| 1008 |
+
sourceNode.layerConfig
|
| 1009 |
+
);
|
| 1010 |
+
|
| 1011 |
+
// Update display
|
| 1012 |
+
updateNodeDisplay(targetNode);
|
| 1013 |
+
|
| 1014 |
+
// Recursively update downstream nodes
|
| 1015 |
+
updateNodeConnections(targetNode, targetId);
|
| 1016 |
+
}
|
| 1017 |
+
});
|
| 1018 |
+
}
|
| 1019 |
+
|
| 1020 |
+
// Helper function to update a node's display
|
| 1021 |
+
function updateNodeDisplay(node) {
|
| 1022 |
+
if (!node || !node.layerConfig) return;
|
| 1023 |
+
|
| 1024 |
+
const nodeType = node.getAttribute('data-type');
|
| 1025 |
+
const layerConfig = node.layerConfig;
|
| 1026 |
+
|
| 1027 |
+
// Create dimensions string
|
| 1028 |
+
let dimensions = '';
|
| 1029 |
+
switch (nodeType) {
|
| 1030 |
+
case 'conv':
|
| 1031 |
+
case 'pool':
|
| 1032 |
+
if (layerConfig.inputShape && layerConfig.outputShape) {
|
| 1033 |
+
dimensions = `${layerConfig.inputShape[0]}×${layerConfig.inputShape[1]}×${layerConfig.inputShape[2]} → ${layerConfig.outputShape[0]}×${layerConfig.outputShape[1]}×${layerConfig.outputShape[2]}`;
|
| 1034 |
+
}
|
| 1035 |
+
break;
|
| 1036 |
+
|
| 1037 |
+
case 'hidden':
|
| 1038 |
+
case 'output':
|
| 1039 |
+
dimensions = layerConfig.units.toString();
|
| 1040 |
+
break;
|
| 1041 |
+
|
| 1042 |
+
case 'linear':
|
| 1043 |
+
dimensions = `${layerConfig.inputFeatures} → ${layerConfig.outputFeatures}`;
|
| 1044 |
+
break;
|
| 1045 |
+
}
|
| 1046 |
+
|
| 1047 |
+
// Update dimensions display
|
| 1048 |
+
if (dimensions) {
|
| 1049 |
+
const nodeDimensions = node.querySelector('.node-dimensions');
|
| 1050 |
+
if (nodeDimensions) {
|
| 1051 |
+
nodeDimensions.textContent = dimensions;
|
| 1052 |
+
node.setAttribute('data-dimensions', dimensions);
|
| 1053 |
+
}
|
| 1054 |
+
}
|
| 1055 |
+
|
| 1056 |
+
// Update parameters display
|
| 1057 |
+
if (layerConfig.parameters !== undefined) {
|
| 1058 |
+
const nodeParameters = node.querySelector('.node-parameters');
|
| 1059 |
+
if (nodeParameters) {
|
| 1060 |
+
nodeParameters.textContent = `Params: ${formatNumber(layerConfig.parameters)}`;
|
| 1061 |
+
}
|
| 1062 |
+
}
|
| 1063 |
}
|
| 1064 |
|
| 1065 |
// Handle sample selection
|
js/neural-network.js
CHANGED
|
@@ -153,10 +153,10 @@
|
|
| 153 |
}
|
| 154 |
|
| 155 |
/**
|
| 156 |
-
* Calculate
|
| 157 |
* @param {string} layerType - The type of the layer
|
| 158 |
* @param {Object} config - Layer configuration
|
| 159 |
-
* @param {Object} prevLayerConfig -
|
| 160 |
* @returns {number} - Number of trainable parameters
|
| 161 |
*/
|
| 162 |
function calculateParameters(layerType, config, prevLayerConfig = null) {
|
|
@@ -169,10 +169,17 @@
|
|
| 169 |
|
| 170 |
case 'hidden':
|
| 171 |
if (prevLayerConfig) {
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
// Weight parameters: input_units * output_units
|
| 178 |
parameters = inputUnits * config.units;
|
|
@@ -186,7 +193,15 @@
|
|
| 186 |
|
| 187 |
case 'output':
|
| 188 |
if (prevLayerConfig) {
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
// Weight parameters: input_units * output_units
|
| 192 |
parameters = inputUnits * config.units;
|
|
@@ -200,9 +215,17 @@
|
|
| 200 |
|
| 201 |
case 'conv':
|
| 202 |
if (prevLayerConfig) {
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
// Weight parameters: kernel_height * kernel_width * input_channels * filters
|
| 208 |
const kernelSize = Array.isArray(config.kernelSize) ?
|
|
@@ -215,11 +238,31 @@
|
|
| 215 |
if (config.useBias) {
|
| 216 |
parameters += config.filters;
|
| 217 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
}
|
| 219 |
break;
|
| 220 |
|
| 221 |
case 'pool':
|
| 222 |
parameters = 0; // Pooling layers have no trainable parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
break;
|
| 224 |
|
| 225 |
default:
|
|
|
|
| 153 |
}
|
| 154 |
|
| 155 |
/**
|
| 156 |
+
* Calculate parameters for a layer
|
| 157 |
* @param {string} layerType - The type of the layer
|
| 158 |
* @param {Object} config - Layer configuration
|
| 159 |
+
* @param {Object} prevLayerConfig - Configuration of the previous connected layer
|
| 160 |
* @returns {number} - Number of trainable parameters
|
| 161 |
*/
|
| 162 |
function calculateParameters(layerType, config, prevLayerConfig = null) {
|
|
|
|
| 169 |
|
| 170 |
case 'hidden':
|
| 171 |
if (prevLayerConfig) {
|
| 172 |
+
// Calculate input units from previous layer shape or units
|
| 173 |
+
let inputUnits;
|
| 174 |
+
if (prevLayerConfig.outputShape && Array.isArray(prevLayerConfig.outputShape)) {
|
| 175 |
+
inputUnits = prevLayerConfig.outputShape.reduce((a, b) => a * b, 1);
|
| 176 |
+
} else if (prevLayerConfig.units) {
|
| 177 |
+
inputUnits = prevLayerConfig.units;
|
| 178 |
+
} else if (prevLayerConfig.shape) {
|
| 179 |
+
inputUnits = prevLayerConfig.shape.reduce((a, b) => a * b, 1);
|
| 180 |
+
} else {
|
| 181 |
+
inputUnits = 784; // Default fallback
|
| 182 |
+
}
|
| 183 |
|
| 184 |
// Weight parameters: input_units * output_units
|
| 185 |
parameters = inputUnits * config.units;
|
|
|
|
| 193 |
|
| 194 |
case 'output':
|
| 195 |
if (prevLayerConfig) {
|
| 196 |
+
// Calculate input units from previous layer
|
| 197 |
+
let inputUnits;
|
| 198 |
+
if (prevLayerConfig.outputShape && Array.isArray(prevLayerConfig.outputShape)) {
|
| 199 |
+
inputUnits = prevLayerConfig.outputShape.reduce((a, b) => a * b, 1);
|
| 200 |
+
} else if (prevLayerConfig.units) {
|
| 201 |
+
inputUnits = prevLayerConfig.units;
|
| 202 |
+
} else {
|
| 203 |
+
inputUnits = 128; // Default fallback
|
| 204 |
+
}
|
| 205 |
|
| 206 |
// Weight parameters: input_units * output_units
|
| 207 |
parameters = inputUnits * config.units;
|
|
|
|
| 215 |
|
| 216 |
case 'conv':
|
| 217 |
if (prevLayerConfig) {
|
| 218 |
+
// Get input channels from previous layer
|
| 219 |
+
let inputChannels;
|
| 220 |
+
if (prevLayerConfig.outputShape && prevLayerConfig.outputShape.length > 2) {
|
| 221 |
+
inputChannels = prevLayerConfig.outputShape[2];
|
| 222 |
+
} else if (prevLayerConfig.shape && prevLayerConfig.shape.length > 2) {
|
| 223 |
+
inputChannels = prevLayerConfig.shape[2];
|
| 224 |
+
} else if (prevLayerConfig.filters) {
|
| 225 |
+
inputChannels = prevLayerConfig.filters;
|
| 226 |
+
} else {
|
| 227 |
+
inputChannels = 1; // Default fallback
|
| 228 |
+
}
|
| 229 |
|
| 230 |
// Weight parameters: kernel_height * kernel_width * input_channels * filters
|
| 231 |
const kernelSize = Array.isArray(config.kernelSize) ?
|
|
|
|
| 238 |
if (config.useBias) {
|
| 239 |
parameters += config.filters;
|
| 240 |
}
|
| 241 |
+
|
| 242 |
+
// Calculate and store output shape
|
| 243 |
+
if (prevLayerConfig.shape || prevLayerConfig.outputShape) {
|
| 244 |
+
const inputShape = prevLayerConfig.outputShape || prevLayerConfig.shape;
|
| 245 |
+
const padding = config.padding === 'same' ? Math.floor(config.kernelSize[0] / 2) : 0;
|
| 246 |
+
const outputHeight = Math.floor((inputShape[0] - config.kernelSize[0] + 2 * padding) / config.strides[0]) + 1;
|
| 247 |
+
const outputWidth = Math.floor((inputShape[1] - config.kernelSize[1] + 2 * padding) / config.strides[1]) + 1;
|
| 248 |
+
|
| 249 |
+
config.outputShape = [outputHeight, outputWidth, config.filters];
|
| 250 |
+
}
|
| 251 |
}
|
| 252 |
break;
|
| 253 |
|
| 254 |
case 'pool':
|
| 255 |
parameters = 0; // Pooling layers have no trainable parameters
|
| 256 |
+
|
| 257 |
+
// Calculate and store output shape
|
| 258 |
+
if (prevLayerConfig && (prevLayerConfig.shape || prevLayerConfig.outputShape)) {
|
| 259 |
+
const inputShape = prevLayerConfig.outputShape || prevLayerConfig.shape;
|
| 260 |
+
const padding = config.padding === 'same' ? Math.floor(config.poolSize[0] / 2) : 0;
|
| 261 |
+
const outputHeight = Math.floor((inputShape[0] - config.poolSize[0] + 2 * padding) / config.strides[0]) + 1;
|
| 262 |
+
const outputWidth = Math.floor((inputShape[1] - config.poolSize[1] + 2 * padding) / config.strides[1]) + 1;
|
| 263 |
+
|
| 264 |
+
config.outputShape = [outputHeight, outputWidth, inputShape[2]];
|
| 265 |
+
}
|
| 266 |
break;
|
| 267 |
|
| 268 |
default:
|