Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,999 Bytes
01901fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor
from longcat_image.models import LongCatImageTransformer2DModel
from longcat_image.pipelines import LongCatImageEditPipeline
import numpy as np
import os
# Global variables for model
pipe = None
device = None
def initialize_model():
"""Initialize the model on first use"""
global pipe, device
if pipe is not None:
return
try:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
checkpoint_dir = './weights/LongCat-Image-Edit'
# Check if model exists
if not os.path.exists(checkpoint_dir):
raise ValueError(f"Model not found at {checkpoint_dir}. Please download the model first.")
text_processor = AutoProcessor.from_pretrained(
checkpoint_dir,
subfolder='tokenizer'
)
transformer = LongCatImageTransformer2DModel.from_pretrained(
checkpoint_dir,
subfolder='transformer',
torch_dtype=torch.bfloat16,
use_safetensors=True
).to(device)
pipe = LongCatImageEditPipeline.from_pretrained(
checkpoint_dir,
transformer=transformer,
text_processor=text_processor,
)
pipe.to(device, torch.bfloat16)
print(f"β
Model loaded successfully on {device}")
except Exception as e:
print(f"β Error loading model: {e}")
raise
def edit_image(
input_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float,
num_inference_steps: int,
seed: int,
progress=gr.Progress()
):
"""Edit image based on text prompt"""
if input_image is None:
raise gr.Error("Please upload an image first")
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter an edit instruction")
try:
# Initialize model if not already loaded
initialize_model()
progress(0.1, desc="Preparing image...")
# Convert to RGB if needed
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
progress(0.2, desc="Generating edited image...")
# Set random seed for reproducibility
generator = torch.Generator("cpu").manual_seed(seed)
# Run the pipeline
with torch.inference_mode():
output = pipe(
input_image,
prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator
)
progress(1.0, desc="Done!")
edited_image = output.images[0]
return edited_image
except Exception as e:
raise gr.Error(f"Error during image editing: {str(e)}")
# Example prompts
example_prompts = [
["ε°η«εζη", "", 4.5, 50, 42],
["Change the cat to a dog", "", 4.5, 50, 42],
["ε°θζ―εζζ΅·ζ»©", "", 4.5, 50, 43],
["Make it nighttime", "", 4.5, 50, 44],
["ε°εΎη转ζ’δΈΊζ²Ήη»ι£ζ Ό", "", 4.5, 50, 45],
]
# Build Gradio interface
with gr.Blocks(fill_height=True) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>π¨ LongCat Image Edit</h1>
<p style="font-size: 16px; color: #666;">
Transform your images with AI-powered editing using natural language instructions
</p>
<p style="font-size: 14px; margin-top: 10px;">
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4A90E2; text-decoration: none;">anycoder</a>
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π€ Input")
input_image = gr.Image(
label="Upload Image",
type="pil",
sources=["upload", "clipboard"],
height=400
)
prompt = gr.Textbox(
label="Edit Instruction",
placeholder="Describe how you want to edit the image (e.g., 'ε°η«εζη' or 'Change the cat to a dog')",
lines=3
)
with gr.Accordion("βοΈ Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt (Optional)",
placeholder="What you don't want in the image",
lines=2
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=4.5,
step=0.5,
label="Guidance Scale",
info="Higher values = stronger adherence to prompt"
)
num_inference_steps = gr.Slider(
minimum=20,
maximum=100,
value=50,
step=5,
label="Inference Steps",
info="More steps = higher quality but slower"
)
seed = gr.Slider(
minimum=0,
maximum=999999,
value=42,
step=1,
label="Random Seed",
info="Use same seed for reproducible results"
)
edit_btn = gr.Button("β¨ Edit Image", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π― Output")
output_image = gr.Image(
label="Edited Image",
type="pil",
height=400,
show_download_button=True
)
gr.Markdown("### π‘ Tips")
gr.Markdown("""
- Upload a clear, well-lit image for best results
- Be specific in your edit instructions
- Supports both English and Chinese prompts
- Try different guidance scales for varied results
- Higher inference steps = better quality (but slower)
""")
# Examples section
gr.Markdown("### π Example Prompts")
gr.Examples(
examples=example_prompts,
inputs=[prompt, negative_prompt, guidance_scale, num_inference_steps, seed],
label="Click to try these examples"
)
# Event handlers
edit_btn.click(
fn=edit_image,
inputs=[
input_image,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
seed
],
outputs=output_image,
api_name="edit_image"
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 40px; padding: 20px; border-top: 1px solid #eee;">
<p style="color: #666; font-size: 14px;">
Powered by LongCat Image Edit |
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4A90E2;">Built with anycoder</a>
</p>
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
text_size="lg",
spacing_size="lg",
radius_size="md"
),
footer_links=[
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"}
]
) |