File size: 11,867 Bytes
26e0cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import os
import re
import traceback
from typing import List, Tuple, Union, Dict, Any
import time
import torch
import copy

from vibevoice.modular.modeling_vibevoice_streaming_inference import VibeVoiceStreamingForConditionalGenerationInference
from vibevoice.processor.vibevoice_streaming_processor import VibeVoiceStreamingProcessor
from transformers.utils import logging

logging.set_verbosity_info()
logger = logging.get_logger(__name__)


class VoiceMapper:
    """Maps speaker names to voice file paths"""
    
    def __init__(self):
        self.setup_voice_presets()

        # change name according to our preset voice file
        new_dict = {}
        for name, path in self.voice_presets.items():
            
            if '_' in name:
                name = name.split('_')[0]
            
            if '-' in name:
                name = name.split('-')[-1]

            new_dict[name] = path
        self.voice_presets.update(new_dict)
        # print(list(self.voice_presets.keys()))

    def setup_voice_presets(self):
        """Setup voice presets by scanning the voices directory."""
        voices_dir = os.path.join(os.path.dirname(__file__), "voices/streaming_model")
        
        # Check if voices directory exists
        if not os.path.exists(voices_dir):
            print(f"Warning: Voices directory not found at {voices_dir}")
            self.voice_presets = {}
            self.available_voices = {}
            return
        
        # Scan for all VOICE files in the voices directory
        self.voice_presets = {}
        
        # Get all .pt files in the voices directory
        pt_files = [f for f in os.listdir(voices_dir) 
                    if f.lower().endswith('.pt') and os.path.isfile(os.path.join(voices_dir, f))]
        
        # Create dictionary with filename (without extension) as key
        for pt_file in pt_files:
            # Remove .pt extension to get the name
            name = os.path.splitext(pt_file)[0]
            # Create full path
            full_path = os.path.join(voices_dir, pt_file)
            self.voice_presets[name] = full_path
        
        # Sort the voice presets alphabetically by name for better UI
        self.voice_presets = dict(sorted(self.voice_presets.items()))
        
        # Filter out voices that don't exist (this is now redundant but kept for safety)
        self.available_voices = {
            name: path for name, path in self.voice_presets.items()
            if os.path.exists(path)
        }
        
        print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
        print(f"Available voices: {', '.join(self.available_voices.keys())}")

    def get_voice_path(self, speaker_name: str) -> str:
        """Get voice file path for a given speaker name"""
        # First try exact match
        if speaker_name in self.voice_presets:
            return self.voice_presets[speaker_name]
        
        # Try partial matching (case insensitive)
        speaker_lower = speaker_name.lower()
        for preset_name, path in self.voice_presets.items():
            if preset_name.lower() in speaker_lower or speaker_lower in preset_name.lower():
                return path
        
        # Default to first voice if no match found
        default_voice = list(self.voice_presets.values())[0]
        print(f"Warning: No voice preset found for '{speaker_name}', using default voice: {default_voice}")
        return default_voice


def parse_args():
    parser = argparse.ArgumentParser(description="VibeVoiceStreaming Processor TXT Input Test")
    parser.add_argument(
        "--model_path",
        type=str,
        default="microsoft/VibeVoice-Realtime-0.5B",
        help="Path to the HuggingFace model directory",
    )
    parser.add_argument(
        "--txt_path",
        type=str,
        default="demo/text_examples/1p_vibevoice.txt",
        help="Path to the txt file containing the script",
    )
    parser.add_argument(
        "--speaker_name",
        type=str,
        default="Wayne",
        help="Single speaker name (e.g., --speaker_name Wayne)",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./outputs",
        help="Directory to save output audio files",
    )
    parser.add_argument(
        "--device",
        type=str,
        default=("cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")),
        help="Device for inference: cuda | mps | cpu",
    )
    parser.add_argument(
        "--cfg_scale",
        type=float,
        default=1.5,
        help="CFG (Classifier-Free Guidance) scale for generation (default: 1.5)",
    )
    
    return parser.parse_args()

def main():
    args = parse_args()

    # Normalize potential 'mpx' typo to 'mps'
    if args.device.lower() == "mpx":
        print("Note: device 'mpx' detected, treating it as 'mps'.")
        args.device = "mps"

    # Validate mps availability if requested
    if args.device == "mps" and not torch.backends.mps.is_available():
        print("Warning: MPS not available. Falling back to CPU.")
        args.device = "cpu"

    print(f"Using device: {args.device}")

    # Initialize voice mapper
    voice_mapper = VoiceMapper()
    
    # Check if txt file exists
    if not os.path.exists(args.txt_path):
        print(f"Error: txt file not found: {args.txt_path}")
        return
    
    # Read and parse txt file
    print(f"Reading script from: {args.txt_path}")
    with open(args.txt_path, 'r', encoding='utf-8') as f:
        scripts = f.read().strip()
    
    if not scripts:
        print("Error: No valid scripts found in the txt file")
        return

    full_script = scripts.replace("’", "'").replace('“', '"').replace('”', '"')

    print(f"Loading processor & model from {args.model_path}")
    processor = VibeVoiceStreamingProcessor.from_pretrained(args.model_path)

    # Decide dtype & attention implementation
    if args.device == "mps":
        load_dtype = torch.float32  # MPS requires float32
        attn_impl_primary = "sdpa"  # flash_attention_2 not supported on MPS
    elif args.device == "cuda":
        load_dtype = torch.bfloat16
        attn_impl_primary = "flash_attention_2"
    else:  # cpu
        load_dtype = torch.float32
        attn_impl_primary = "sdpa"
    print(f"Using device: {args.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
    # Load model with device-specific logic
    try:
        if args.device == "mps":
            model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
                args.model_path,
                torch_dtype=load_dtype,
                attn_implementation=attn_impl_primary,
                device_map=None,  # load then move
            )
            model.to("mps")
        elif args.device == "cuda":
            model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
                args.model_path,
                torch_dtype=load_dtype,
                device_map="cuda",
                attn_implementation=attn_impl_primary,
            )
        else:  # cpu
            model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
                args.model_path,
                torch_dtype=load_dtype,
                device_map="cpu",
                attn_implementation=attn_impl_primary,
            )
    except Exception as e:
        if attn_impl_primary == 'flash_attention_2':
            print(f"[ERROR] : {type(e).__name__}: {e}")
            print(traceback.format_exc())
            print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.")
            model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
                args.model_path,
                torch_dtype=load_dtype,
                device_map=(args.device if args.device in ("cuda", "cpu") else None),
                attn_implementation='sdpa'
            )
            if args.device == "mps":
                model.to("mps")
        else:
            raise e


    model.eval()
    model.set_ddpm_inference_steps(num_steps=5)

    if hasattr(model.model, 'language_model'):
       print(f"Language model attention: {model.model.language_model.config._attn_implementation}")
    
    target_device = args.device if args.device != "cpu" else "cpu"
    voice_sample = voice_mapper.get_voice_path(args.speaker_name)
    all_prefilled_outputs = torch.load(voice_sample, map_location=target_device, weights_only=False)

    # Prepare inputs for the model
    inputs = processor.process_input_with_cached_prompt(
        text=full_script,
        cached_prompt=all_prefilled_outputs,
        padding=True,
        return_tensors="pt",
        return_attention_mask=True,
    )

    # Move tensors to target device
    for k, v in inputs.items():
        if torch.is_tensor(v):
            inputs[k] = v.to(target_device)

    print(f"Starting generation with cfg_scale: {args.cfg_scale}")

    # Generate audio
    start_time = time.time()
    outputs = model.generate(
        **inputs,
        max_new_tokens=None,
        cfg_scale=args.cfg_scale,
        tokenizer=processor.tokenizer,
        generation_config={'do_sample': False},
        verbose=True,
        all_prefilled_outputs=copy.deepcopy(all_prefilled_outputs) if all_prefilled_outputs is not None else None,
    )
    generation_time = time.time() - start_time
    print(f"Generation time: {generation_time:.2f} seconds")
    
    # Calculate audio duration and additional metrics
    if outputs.speech_outputs and outputs.speech_outputs[0] is not None:
        # Assuming 24kHz sample rate (common for speech synthesis)
        sample_rate = 24000
        audio_samples = outputs.speech_outputs[0].shape[-1] if len(outputs.speech_outputs[0].shape) > 0 else len(outputs.speech_outputs[0])
        audio_duration = audio_samples / sample_rate
        rtf = generation_time / audio_duration if audio_duration > 0 else float('inf')
        
        print(f"Generated audio duration: {audio_duration:.2f} seconds")
        print(f"RTF (Real Time Factor): {rtf:.2f}x")
    else:
        print("No audio output generated")
    
    # Calculate token metrics
    input_tokens = inputs['tts_text_ids'].shape[1]  # Number of input tokens
    output_tokens = outputs.sequences.shape[1]  # Total tokens (input + generated)
    generated_tokens = output_tokens - input_tokens - all_prefilled_outputs['tts_lm']['last_hidden_state'].size(1)
    
    print(f"Prefilling text tokens: {input_tokens}")
    print(f"Generated speech tokens: {generated_tokens}")
    print(f"Total tokens: {output_tokens}")

    # Save output (processor handles device internally)
    txt_filename = os.path.splitext(os.path.basename(args.txt_path))[0]
    output_path = os.path.join(args.output_dir, f"{txt_filename}_generated.wav")
    os.makedirs(args.output_dir, exist_ok=True)
    
    processor.save_audio(
        outputs.speech_outputs[0], # First (and only) batch item
        output_path=output_path,
    )
    print(f"Saved output to {output_path}")
    
    # Print summary
    print("\n" + "="*50)
    print("GENERATION SUMMARY")
    print("="*50)
    print(f"Input file: {args.txt_path}")
    print(f"Output file: {output_path}")
    print(f"Speaker names: {args.speaker_name}")
    print(f"Prefilling text tokens: {input_tokens}")
    print(f"Generated speech tokens: {generated_tokens}")
    print(f"Total tokens: {output_tokens}")
    print(f"Generation time: {generation_time:.2f} seconds")
    print(f"Audio duration: {audio_duration:.2f} seconds")
    print(f"RTF (Real Time Factor): {rtf:.2f}x")
    
    print("="*50)

if __name__ == "__main__":
    main()