File size: 17,423 Bytes
26e0cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import datetime
import builtins
import asyncio
import json
import os
import threading
import traceback
from pathlib import Path
from queue import Empty, Queue
from typing import Any, Callable, Dict, Iterator, Optional, Tuple, cast

import numpy as np
import torch
from fastapi import FastAPI, WebSocket
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from starlette.websockets import WebSocketDisconnect, WebSocketState

from vibevoice.modular.modeling_vibevoice_streaming_inference import (
    VibeVoiceStreamingForConditionalGenerationInference,
)
from vibevoice.processor.vibevoice_streaming_processor import (
    VibeVoiceStreamingProcessor,
)
from vibevoice.modular.streamer import AudioStreamer

import copy

BASE = Path(__file__).parent
SAMPLE_RATE = 24_000


def get_timestamp():
    timestamp = datetime.datetime.utcnow().replace(
        tzinfo=datetime.timezone.utc
    ).astimezone(
        datetime.timezone(datetime.timedelta(hours=8))
    ).strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
    return timestamp

class StreamingTTSService:
    def __init__(
        self,
        model_path: str,
        device: str = "cuda",
        inference_steps: int = 5,
    ) -> None:
        self.model_path = Path(model_path)
        self.inference_steps = inference_steps
        self.sample_rate = SAMPLE_RATE

        self.processor: Optional[VibeVoiceStreamingProcessor] = None
        self.model: Optional[VibeVoiceStreamingForConditionalGenerationInference] = None
        self.voice_presets: Dict[str, Path] = {}
        self.default_voice_key: Optional[str] = None
        self._voice_cache: Dict[str, Tuple[object, Path, str]] = {}

        if device == "mpx":
            print("Note: device 'mpx' detected, treating it as 'mps'.")
            device = "mps"        
        if device == "mps" and not torch.backends.mps.is_available():
            print("Warning: MPS not available. Falling back to CPU.")
            device = "cpu"
        self.device = device
        self._torch_device = torch.device(device)

    def load(self) -> None:
        print(f"[startup] Loading processor from {self.model_path}")
        self.processor = VibeVoiceStreamingProcessor.from_pretrained(str(self.model_path))

        
        # Decide dtype & attention
        if self.device == "mps":
            load_dtype = torch.float32
            device_map = None
            attn_impl_primary = "sdpa"
        elif self.device == "cuda":
            load_dtype = torch.bfloat16
            device_map = 'cuda'
            attn_impl_primary = "flash_attention_2"
        else:
            load_dtype = torch.float32
            device_map = 'cpu'
            attn_impl_primary = "sdpa"
        print(f"Using device: {device_map}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
        # Load model
        try:
            self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
                str(self.model_path),
                torch_dtype=load_dtype,
                device_map=device_map,
                attn_implementation=attn_impl_primary,
            )
            
            if self.device == "mps":
                self.model.to("mps")
        except Exception as e:
            if attn_impl_primary == 'flash_attention_2':
                print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.")
                
                self.model = VibeVoiceStreamingForConditionalGenerationInference.from_pretrained(
                    str(self.model_path),
                    torch_dtype=load_dtype,
                    device_map=self.device,
                    attn_implementation='sdpa',
                )
                print("Load model with SDPA successfully ")
            else:
                raise e

        self.model.eval()

        self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
            self.model.model.noise_scheduler.config,
            algorithm_type="sde-dpmsolver++",
            beta_schedule="squaredcos_cap_v2",
        )
        self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)

        self.voice_presets = self._load_voice_presets()
        preset_name = os.environ.get("VOICE_PRESET")
        self.default_voice_key = self._determine_voice_key(preset_name)
        self._ensure_voice_cached(self.default_voice_key)

    def _load_voice_presets(self) -> Dict[str, Path]:
        voices_dir = BASE.parent / "voices" / "streaming_model"
        if not voices_dir.exists():
            raise RuntimeError(f"Voices directory not found: {voices_dir}")

        presets: Dict[str, Path] = {}
        for pt_path in voices_dir.glob("*.pt"):
            presets[pt_path.stem] = pt_path

        if not presets:
            raise RuntimeError(f"No voice preset (.pt) files found in {voices_dir}")

        print(f"[startup] Found {len(presets)} voice presets")
        return dict(sorted(presets.items()))

    def _determine_voice_key(self, name: Optional[str]) -> str:
        if name and name in self.voice_presets:
            return name

        default_key = "en-WHTest_man"
        if default_key in self.voice_presets:
            return default_key

        first_key = next(iter(self.voice_presets))
        print(f"[startup] Using fallback voice preset: {first_key}")
        return first_key

    def _ensure_voice_cached(self, key: str) -> Tuple[object, Path, str]:
        if key not in self.voice_presets:
            raise RuntimeError(f"Voice preset {key!r} not found")

        if key not in self._voice_cache:
            preset_path = self.voice_presets[key]
            print(f"[startup] Loading voice preset {key} from {preset_path}")
            print(f"[startup] Loading prefilled prompt from {preset_path}")
            prefilled_outputs = torch.load(
                preset_path,
                map_location=self._torch_device,
                weights_only=False,
            )
            self._voice_cache[key] = prefilled_outputs

        return self._voice_cache[key]

    def _get_voice_resources(self, requested_key: Optional[str]) -> Tuple[str, object, Path, str]:
        key = requested_key if requested_key and requested_key in self.voice_presets else self.default_voice_key
        if key is None:
            key = next(iter(self.voice_presets))
            self.default_voice_key = key

        prefilled_outputs = self._ensure_voice_cached(key)
        return key, prefilled_outputs

    def _prepare_inputs(self, text: str, prefilled_outputs: object):
        if not self.processor or not self.model:
            raise RuntimeError("StreamingTTSService not initialized")

        processor_kwargs = {
            "text": text.strip(),
            "cached_prompt": prefilled_outputs,
            "padding": True,
            "return_tensors": "pt",
            "return_attention_mask": True,
        }

        processed = self.processor.process_input_with_cached_prompt(**processor_kwargs)

        prepared = {
            key: value.to(self._torch_device) if hasattr(value, "to") else value
            for key, value in processed.items()
        }
        return prepared

    def _run_generation(
        self,
        inputs,
        audio_streamer: AudioStreamer,
        errors,
        cfg_scale: float,
        do_sample: bool,
        temperature: float,
        top_p: float,
        refresh_negative: bool,
        prefilled_outputs,
        stop_event: threading.Event,
    ) -> None:
        try:
            self.model.generate(
                **inputs,
                max_new_tokens=None,
                cfg_scale=cfg_scale,
                tokenizer=self.processor.tokenizer,
                generation_config={
                    "do_sample": do_sample,
                    "temperature": temperature if do_sample else 1.0,
                    "top_p": top_p if do_sample else 1.0,
                },
                audio_streamer=audio_streamer,
                stop_check_fn=stop_event.is_set,
                verbose=False,
                refresh_negative=refresh_negative,
                all_prefilled_outputs=copy.deepcopy(prefilled_outputs),
            )
        except Exception as exc:  # pragma: no cover - diagnostic logging
            errors.append(exc)
            traceback.print_exc()
            audio_streamer.end()

    def stream(
        self,
        text: str,
        cfg_scale: float = 1.5,
        do_sample: bool = False,
        temperature: float = 0.9,
        top_p: float = 0.9,
        refresh_negative: bool = True,
        inference_steps: Optional[int] = None,
        voice_key: Optional[str] = None,
        log_callback: Optional[Callable[[str, Dict[str, Any]], None]] = None,
        stop_event: Optional[threading.Event] = None,
    ) -> Iterator[np.ndarray]:
        if not text.strip():
            return
        text = text.replace("’", "'")
        selected_voice, prefilled_outputs = self._get_voice_resources(voice_key)

        def emit(event: str, **payload: Any) -> None:
            if log_callback:
                try:
                    log_callback(event, **payload)
                except Exception as exc:
                    print(f"[log_callback] Error while emitting {event}: {exc}")

        steps_to_use = self.inference_steps
        if inference_steps is not None:
            try:
                parsed_steps = int(inference_steps)
                if parsed_steps > 0:
                    steps_to_use = parsed_steps
            except (TypeError, ValueError):
                pass
        if self.model:
            self.model.set_ddpm_inference_steps(num_steps=steps_to_use)
        self.inference_steps = steps_to_use

        inputs = self._prepare_inputs(text, prefilled_outputs)
        audio_streamer = AudioStreamer(batch_size=1, stop_signal=None, timeout=None)
        errors: list = []
        stop_signal = stop_event or threading.Event()

        thread = threading.Thread(
            target=self._run_generation,
            kwargs={
                "inputs": inputs,
                "audio_streamer": audio_streamer,
                "errors": errors,
                "cfg_scale": cfg_scale,
                "do_sample": do_sample,
                "temperature": temperature,
                "top_p": top_p,
                "refresh_negative": refresh_negative,
                "prefilled_outputs": prefilled_outputs,
                "stop_event": stop_signal,
            },
            daemon=True,
        )
        thread.start()

        generated_samples = 0

        try:
            stream = audio_streamer.get_stream(0)
            for audio_chunk in stream:
                if torch.is_tensor(audio_chunk):
                    audio_chunk = audio_chunk.detach().cpu().to(torch.float32).numpy()
                else:
                    audio_chunk = np.asarray(audio_chunk, dtype=np.float32)

                if audio_chunk.ndim > 1:
                    audio_chunk = audio_chunk.reshape(-1)

                peak = np.max(np.abs(audio_chunk)) if audio_chunk.size else 0.0
                if peak > 1.0:
                    audio_chunk = audio_chunk / peak

                generated_samples += int(audio_chunk.size)
                emit(
                    "model_progress",
                    generated_sec=generated_samples / self.sample_rate,
                    chunk_sec=audio_chunk.size / self.sample_rate,
                )

                chunk_to_yield = audio_chunk.astype(np.float32, copy=False)

                yield chunk_to_yield
        finally:
            stop_signal.set()
            audio_streamer.end()
            thread.join()
            if errors:
                emit("generation_error", message=str(errors[0]))
                raise errors[0]

    def chunk_to_pcm16(self, chunk: np.ndarray) -> bytes:
        chunk = np.clip(chunk, -1.0, 1.0)
        pcm = (chunk * 32767.0).astype(np.int16)
        return pcm.tobytes()


app = FastAPI()


@app.on_event("startup")
async def _startup() -> None:
    model_path = os.environ.get("MODEL_PATH")
    if not model_path:
        raise RuntimeError("MODEL_PATH not set in environment")

    device = os.environ.get("MODEL_DEVICE", "cuda")
    
    service = StreamingTTSService(
        model_path=model_path,
        device=device
    )
    service.load()

    app.state.tts_service = service
    app.state.model_path = model_path
    app.state.device = device
    app.state.websocket_lock = asyncio.Lock()
    print("[startup] Model ready.")


def streaming_tts(text: str, **kwargs) -> Iterator[np.ndarray]:
    service: StreamingTTSService = app.state.tts_service
    yield from service.stream(text, **kwargs)

@app.websocket("/stream")
async def websocket_stream(ws: WebSocket) -> None:
    await ws.accept()
    text = ws.query_params.get("text", "")
    print(f"Client connected, text={text!r}")
    cfg_param = ws.query_params.get("cfg")
    steps_param = ws.query_params.get("steps")
    voice_param = ws.query_params.get("voice")

    try:
        cfg_scale = float(cfg_param) if cfg_param is not None else 1.5
    except ValueError:
        cfg_scale = 1.5
    if cfg_scale <= 0:
        cfg_scale = 1.5
    try:
        inference_steps = int(steps_param) if steps_param is not None else None
        if inference_steps is not None and inference_steps <= 0:
            inference_steps = None
    except ValueError:
        inference_steps = None

    service: StreamingTTSService = app.state.tts_service
    lock: asyncio.Lock = app.state.websocket_lock

    if lock.locked():
        busy_message = {
            "type": "log",
            "event": "backend_busy",
            "data": {"message": "Please wait for the other requests to complete."},
            "timestamp": get_timestamp(),
        }
        print("Please wait for the other requests to complete.")
        try:
            await ws.send_text(json.dumps(busy_message))
        except Exception:
            pass
        await ws.close(code=1013, reason="Service busy")
        return

    acquired = False
    try:
        await lock.acquire()
        acquired = True

        log_queue: "Queue[Dict[str, Any]]" = Queue()

        def enqueue_log(event: str, **data: Any) -> None:
            log_queue.put({"event": event, "data": data})

        async def flush_logs() -> None:
            while True:
                try:
                    entry = log_queue.get_nowait()
                except Empty:
                    break
                message = {
                    "type": "log",
                    "event": entry.get("event"),
                    "data": entry.get("data", {}),
                    "timestamp": get_timestamp(),
                }
                try:
                    await ws.send_text(json.dumps(message))
                except Exception:
                    break

        enqueue_log(
            "backend_request_received",
            text_length=len(text or ""),
            cfg_scale=cfg_scale,
            inference_steps=inference_steps,
            voice=voice_param,
        )

        stop_signal = threading.Event()

        iterator = streaming_tts(
            text,
            cfg_scale=cfg_scale,
            inference_steps=inference_steps,
            voice_key=voice_param,
            log_callback=enqueue_log,
            stop_event=stop_signal,
        )
        sentinel = object()
        first_ws_send_logged = False

        await flush_logs()

        try:
            while ws.client_state == WebSocketState.CONNECTED:
                await flush_logs()
                chunk = await asyncio.to_thread(next, iterator, sentinel)
                if chunk is sentinel:
                    break
                chunk = cast(np.ndarray, chunk)
                payload = service.chunk_to_pcm16(chunk)
                await ws.send_bytes(payload)
                if not first_ws_send_logged:
                    first_ws_send_logged = True
                    enqueue_log("backend_first_chunk_sent")
                await flush_logs()
        except WebSocketDisconnect:
            print("Client disconnected (WebSocketDisconnect)")
            enqueue_log("client_disconnected")
            stop_signal.set()
        finally:
            stop_signal.set()
            enqueue_log("backend_stream_complete")
            await flush_logs()
            try:
                iterator_close = getattr(iterator, "close", None)
                if callable(iterator_close):
                    iterator_close()
            except Exception:
                pass
            # clear the log queue
            while not log_queue.empty():
                try:
                    log_queue.get_nowait()
                except Empty:
                    break
            if ws.client_state == WebSocketState.CONNECTED:
                await ws.close()
            print("WS handler exit")
    finally:
        if acquired:
            lock.release()


@app.get("/")
def index():
    return FileResponse(BASE / "index.html")


@app.get("/config")
def get_config():
    service: StreamingTTSService = app.state.tts_service
    voices = sorted(service.voice_presets.keys())
    return {
        "voices": voices,
        "default_voice": service.default_voice_key,
    }