Spaces:
Sleeping
Sleeping
Ashwin B
commited on
Commit
·
7a59d05
1
Parent(s):
e7784a7
changes
Browse files- README.md +2 -2
- app/app.py +3 -6
README.md
CHANGED
|
@@ -3,8 +3,8 @@ title: Emotion Classifier (NLP)
|
|
| 3 |
emoji: 🧠
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: pink
|
| 6 |
-
sdk:
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app/app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 3 |
emoji: 🧠
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: pink
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.32.2
|
| 8 |
app_file: app/app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app/app.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
import os
|
| 2 |
-
os.system("git lfs pull")
|
| 3 |
-
|
| 4 |
import streamlit as st
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
@@ -20,7 +17,7 @@ GOEMOTIONS_LABELS = [
|
|
| 20 |
# -----------------------------
|
| 21 |
# Load model and tokenizer
|
| 22 |
# -----------------------------
|
| 23 |
-
MODEL_PATH = "outputs/model"
|
| 24 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
| 25 |
model.to("cpu")
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
|
@@ -41,8 +38,8 @@ if st.button("Classify") and input_text.strip():
|
|
| 41 |
outputs = model(**inputs)
|
| 42 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
| 43 |
|
| 44 |
-
pred_label_idx = torch.argmax(probs).
|
| 45 |
-
pred_score = probs[pred_label_idx].
|
| 46 |
pred_emotion = GOEMOTIONS_LABELS[pred_label_idx]
|
| 47 |
|
| 48 |
# -----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 17 |
# -----------------------------
|
| 18 |
# Load model and tokenizer
|
| 19 |
# -----------------------------
|
| 20 |
+
MODEL_PATH = "./outputs/model"
|
| 21 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
| 22 |
model.to("cpu")
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
|
|
|
| 38 |
outputs = model(**inputs)
|
| 39 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
| 40 |
|
| 41 |
+
pred_label_idx = torch.argmax(probs).item()
|
| 42 |
+
pred_score = probs[pred_label_idx].item()
|
| 43 |
pred_emotion = GOEMOTIONS_LABELS[pred_label_idx]
|
| 44 |
|
| 45 |
# -----------------------------
|