Spaces:
Build error
Build error
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -13,6 +13,7 @@ from utils import (
|
|
| 13 |
extract_entities,
|
| 14 |
format_query,
|
| 15 |
get_flan_alpaca_xl_model,
|
|
|
|
| 16 |
generate_entities_flan_alpaca,
|
| 17 |
format_entities_flan_alpaca,
|
| 18 |
generate_flant5_prompt_instruct_chunk_context,
|
|
@@ -56,7 +57,7 @@ with st.sidebar:
|
|
| 56 |
ner_choice = st.selectbox("Select NER Model", ["Alpaca", "Spacy"])
|
| 57 |
|
| 58 |
if ner_choice == "Alpaca":
|
| 59 |
-
ner_model = get_flan_alpaca_xl_model()
|
| 60 |
else:
|
| 61 |
ner_model = get_spacy_model()
|
| 62 |
|
|
@@ -68,7 +69,8 @@ with col1:
|
|
| 68 |
)
|
| 69 |
|
| 70 |
if ner_choice == "Alpaca":
|
| 71 |
-
|
|
|
|
| 72 |
company_ent, quarter_ent, year_ent = format_entities_flan_alpaca(entity_text)
|
| 73 |
else:
|
| 74 |
company_ent, quarter_ent, year_ent = extract_entities(query_text, ner_model)
|
|
|
|
| 13 |
extract_entities,
|
| 14 |
format_query,
|
| 15 |
get_flan_alpaca_xl_model,
|
| 16 |
+
generate_alpaca_ner_prompt,
|
| 17 |
generate_entities_flan_alpaca,
|
| 18 |
format_entities_flan_alpaca,
|
| 19 |
generate_flant5_prompt_instruct_chunk_context,
|
|
|
|
| 57 |
ner_choice = st.selectbox("Select NER Model", ["Alpaca", "Spacy"])
|
| 58 |
|
| 59 |
if ner_choice == "Alpaca":
|
| 60 |
+
ner_model, ner_tokenizer = get_flan_alpaca_xl_model()
|
| 61 |
else:
|
| 62 |
ner_model = get_spacy_model()
|
| 63 |
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
if ner_choice == "Alpaca":
|
| 72 |
+
ner_prompt = generate_alpaca_ner_prompt(query_text)
|
| 73 |
+
entity_text = generate_entities_flan_alpaca(ner_model, ner_tokenizer, ner_prompt)
|
| 74 |
company_ent, quarter_ent, year_ent = format_entities_flan_alpaca(entity_text)
|
| 75 |
else:
|
| 76 |
company_ent, quarter_ent, year_ent = extract_entities(query_text, ner_model)
|
utils.py
CHANGED
|
@@ -36,7 +36,9 @@ def get_spacy_model():
|
|
| 36 |
|
| 37 |
@st.experimental_singleton
|
| 38 |
def get_flan_alpaca_xl_model():
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
# Initialize models from HuggingFace
|
|
@@ -474,10 +476,55 @@ Answer:?"""
|
|
| 474 |
|
| 475 |
# Entity Extraction
|
| 476 |
|
| 477 |
-
def
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
|
| 483 |
def format_entities_flan_alpaca(model_output):
|
|
|
|
| 36 |
|
| 37 |
@st.experimental_singleton
|
| 38 |
def get_flan_alpaca_xl_model():
|
| 39 |
+
model = AutoModelForSeq2SeqLM("./models/flan-alpaca-xl")
|
| 40 |
+
tokenizer = AutoTokenizer("./models/flan-alpaca-xl")
|
| 41 |
+
return model, tokenizer
|
| 42 |
|
| 43 |
|
| 44 |
# Initialize models from HuggingFace
|
|
|
|
| 476 |
|
| 477 |
# Entity Extraction
|
| 478 |
|
| 479 |
+
def generate_alpaca_ner_prompt(query):
|
| 480 |
+
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Use the following guidelines to extract the entities representing the Company, Quarter, and Year in the sentence.
|
| 481 |
+
|
| 482 |
+
### Instruction:
|
| 483 |
+
- The output should be in the form "Company - Value, Quarter - Value, Year - Value".
|
| 484 |
+
- The output should be in the form "Company - None, Quarter - None, Year - None", if no entities are found.
|
| 485 |
+
- Only use entities that exist in the final sentence.
|
| 486 |
+
- If Company cannot be found in the sentence, return "none" for that entity.
|
| 487 |
+
- If Quarter cannot be found in the sentence, return "none" for that entity.
|
| 488 |
+
- If Year cannot be found in the sentence, return "none" for that entity.
|
| 489 |
+
- If there is ambiguity finding the entity, return "none" for that entity.
|
| 490 |
+
|
| 491 |
+
### Input:
|
| 492 |
+
|
| 493 |
+
What was discussed regarding Wearables revenue performance in Apple's Q3 2023 earnings call?
|
| 494 |
+
Company - Apple, Quarter - Q3, Year - 2023
|
| 495 |
+
|
| 496 |
+
How has the growth in Q1 been for the PC market as seen by AMD?
|
| 497 |
+
Company - AMD, Quarter - Q1, Year - none
|
| 498 |
+
|
| 499 |
+
What was the long term view on GOOGL's cloud business growth as discussed in their earnings call?
|
| 500 |
+
Company - Google, Quarter - none, Year - none
|
| 501 |
+
|
| 502 |
+
What is Nvidia's visibility in the data center business in 2020?
|
| 503 |
+
Company - Nvidia, Quarter - none, Year - 2020
|
| 504 |
+
|
| 505 |
+
What are the opportunities and challenges in the Indian market that Amazon is facing?
|
| 506 |
+
Company - Amazon, Quarter - none, Year - none
|
| 507 |
+
|
| 508 |
+
What did the Analysts ask about CSCO's cybersecurity business in the earnings call?
|
| 509 |
+
Company - Cisco, Quarter - none, Year - none
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
{query}
|
| 513 |
+
### Response:"""
|
| 514 |
+
return prompt
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def generate_entities_flan_alpaca(model, tokenizer, prompt):
|
| 518 |
+
model_inputs = tokenizer(prompt, return_tensors="pt")
|
| 519 |
+
input_ids = inputs["input_ids"]
|
| 520 |
+
generation_output = model.generate(
|
| 521 |
+
input_ids=input_ids,
|
| 522 |
+
temperature=0.1,
|
| 523 |
+
top_p=0.5,
|
| 524 |
+
max_new_tokens=1024,
|
| 525 |
+
)
|
| 526 |
+
output = tokenizer.decode(generation_output[0], skip_special_tokens=True)
|
| 527 |
+
return output
|
| 528 |
|
| 529 |
|
| 530 |
def format_entities_flan_alpaca(model_output):
|