Spaces:
Runtime error
Runtime error
Terry Zhuo
commited on
Commit
·
371a048
1
Parent(s):
c32a030
app.py
CHANGED
|
@@ -3,9 +3,9 @@ import gradio as gr
|
|
| 3 |
from gradio.utils import get_space
|
| 4 |
from e2b_code_interpreter import Sandbox
|
| 5 |
from pathlib import Path
|
| 6 |
-
from
|
|
|
|
| 7 |
import json
|
| 8 |
-
import re
|
| 9 |
|
| 10 |
if not get_space():
|
| 11 |
try:
|
|
@@ -20,12 +20,9 @@ from utils import (
|
|
| 20 |
run_interactive_notebook,
|
| 21 |
create_base_notebook,
|
| 22 |
update_notebook_display,
|
| 23 |
-
update_notebook_with_cell,
|
| 24 |
-
update_notebook_with_markdown,
|
| 25 |
)
|
| 26 |
|
| 27 |
E2B_API_KEY = os.environ["E2B_API_KEY"]
|
| 28 |
-
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 29 |
DEFAULT_MAX_TOKENS = 512
|
| 30 |
SANDBOXES = {}
|
| 31 |
TMP_DIR = './tmp/'
|
|
@@ -39,42 +36,6 @@ with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
|
|
| 39 |
with open("ds-system-prompt.txt", "r") as f:
|
| 40 |
DEFAULT_SYSTEM_PROMPT = f.read()
|
| 41 |
|
| 42 |
-
# Add this constant at the top with other constants
|
| 43 |
-
MAX_TURNS = 10
|
| 44 |
-
|
| 45 |
-
# Replace the client initialization with local model loading
|
| 46 |
-
def load_model_and_tokenizer(model_name="bigcomputer/jupycoder-7b-lora-350"):
|
| 47 |
-
if model_name == "bigcomputer/jupycoder-7b-lora-350":
|
| 48 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 49 |
-
model_name,
|
| 50 |
-
device_map="auto"
|
| 51 |
-
)
|
| 52 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B-Instruct")
|
| 53 |
-
else:
|
| 54 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
-
model_name,
|
| 56 |
-
device_map="auto"
|
| 57 |
-
)
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 59 |
-
return model, tokenizer
|
| 60 |
-
|
| 61 |
-
# Function to extract code and text from model response
|
| 62 |
-
def parse_model_response(response_text):
|
| 63 |
-
cells = []
|
| 64 |
-
# Split by code blocks
|
| 65 |
-
parts = re.split(r'(```python[\s\S]*?```)', response_text)
|
| 66 |
-
|
| 67 |
-
for part in parts:
|
| 68 |
-
if part.strip():
|
| 69 |
-
if part.startswith('```python'):
|
| 70 |
-
# Extract code without the markers
|
| 71 |
-
code = re.sub(r'```python\n|```', '', part).strip()
|
| 72 |
-
cells.append({"type": "code", "content": code})
|
| 73 |
-
else:
|
| 74 |
-
# Regular text becomes markdown
|
| 75 |
-
cells.append({"type": "markdown", "content": part.strip()})
|
| 76 |
-
|
| 77 |
-
return cells
|
| 78 |
|
| 79 |
def execute_jupyter_agent(
|
| 80 |
system_prompt, user_input, max_new_tokens, model_name, files, message_history, request: gr.Request
|
|
@@ -87,9 +48,18 @@ def execute_jupyter_agent(
|
|
| 87 |
os.makedirs(save_dir, exist_ok=True)
|
| 88 |
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
# Handle file uploads
|
| 93 |
filenames = []
|
| 94 |
if files is not None:
|
| 95 |
for filepath in files:
|
|
@@ -99,73 +69,28 @@ def execute_jupyter_agent(
|
|
| 99 |
sbx.files.write(filpath.name, file)
|
| 100 |
filenames.append(filpath.name)
|
| 101 |
|
| 102 |
-
# Initialize
|
| 103 |
if len(message_history) == 0:
|
| 104 |
-
message_history.append(
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
message_history.append({"role": "user", "content": user_input})
|
| 109 |
|
| 110 |
-
|
| 111 |
-
notebook_data = create_base_notebook([])
|
| 112 |
-
turn_count = 0
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 120 |
-
|
| 121 |
-
outputs = model.generate(
|
| 122 |
-
**inputs,
|
| 123 |
-
max_new_tokens=max_new_tokens,
|
| 124 |
-
do_sample=True,
|
| 125 |
-
temperature=0.7,
|
| 126 |
-
)
|
| 127 |
-
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 128 |
-
|
| 129 |
-
# Parse response into cells
|
| 130 |
-
cells = parse_model_response(response_text)
|
| 131 |
-
|
| 132 |
-
# Process each cell
|
| 133 |
-
has_code = False
|
| 134 |
-
for cell in cells:
|
| 135 |
-
if cell["type"] == "code":
|
| 136 |
-
has_code = True
|
| 137 |
-
# Execute code cell
|
| 138 |
-
result = sbx.python.run(cell["content"])
|
| 139 |
-
# Add code cell and output to notebook
|
| 140 |
-
notebook_data = update_notebook_with_cell(notebook_data, cell["content"], result)
|
| 141 |
-
# Add execution result to message history
|
| 142 |
-
message_history.append({
|
| 143 |
-
"role": "assistant",
|
| 144 |
-
"content": cell["content"]
|
| 145 |
-
})
|
| 146 |
-
message_history.append({
|
| 147 |
-
"role": "user",
|
| 148 |
-
"content": f"Execution result:\n{result}"
|
| 149 |
-
})
|
| 150 |
-
else:
|
| 151 |
-
# Add markdown cell to notebook
|
| 152 |
-
notebook_data = update_notebook_with_markdown(notebook_data, cell["content"])
|
| 153 |
-
message_history.append({
|
| 154 |
-
"role": "assistant",
|
| 155 |
-
"content": cell["content"]
|
| 156 |
-
})
|
| 157 |
-
|
| 158 |
-
# Update display after each cell
|
| 159 |
-
notebook_html = update_notebook_display(notebook_data)
|
| 160 |
-
yield notebook_html, message_history, save_dir
|
| 161 |
-
|
| 162 |
-
# If no code was generated or we've reached max turns, stop
|
| 163 |
-
if not has_code or turn_count >= MAX_TURNS:
|
| 164 |
-
break
|
| 165 |
-
|
| 166 |
-
# Save final notebook
|
| 167 |
with open(save_dir, 'w', encoding='utf-8') as f:
|
| 168 |
json.dump(notebook_data, f, indent=2)
|
|
|
|
| 169 |
|
| 170 |
def clear(msg_state):
|
| 171 |
msg_state = []
|
|
@@ -254,4 +179,4 @@ with gr.Blocks() as demo:
|
|
| 254 |
"""
|
| 255 |
)
|
| 256 |
|
| 257 |
-
demo.launch(ssr_mode=False)
|
|
|
|
| 3 |
from gradio.utils import get_space
|
| 4 |
from e2b_code_interpreter import Sandbox
|
| 5 |
from pathlib import Path
|
| 6 |
+
from peft import PeftModel
|
| 7 |
+
from transformers import AutoTokenizer,AutoModelForCausalLM
|
| 8 |
import json
|
|
|
|
| 9 |
|
| 10 |
if not get_space():
|
| 11 |
try:
|
|
|
|
| 20 |
run_interactive_notebook,
|
| 21 |
create_base_notebook,
|
| 22 |
update_notebook_display,
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
E2B_API_KEY = os.environ["E2B_API_KEY"]
|
|
|
|
| 26 |
DEFAULT_MAX_TOKENS = 512
|
| 27 |
SANDBOXES = {}
|
| 28 |
TMP_DIR = './tmp/'
|
|
|
|
| 36 |
with open("ds-system-prompt.txt", "r") as f:
|
| 37 |
DEFAULT_SYSTEM_PROMPT = f.read()
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def execute_jupyter_agent(
|
| 41 |
system_prompt, user_input, max_new_tokens, model_name, files, message_history, request: gr.Request
|
|
|
|
| 48 |
os.makedirs(save_dir, exist_ok=True)
|
| 49 |
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
|
| 50 |
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B-Instruct")
|
| 52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
+
"Qwen/Qwen2.5-Coder-7B-Instruct", torch_dtype='auto'
|
| 54 |
+
).eval()
|
| 55 |
+
# # Load the LoRA adapter and move the model to GPU
|
| 56 |
+
model = PeftModel.from_pretrained(
|
| 57 |
+
model,
|
| 58 |
+
model_name,
|
| 59 |
+
device_map="auto", # Automatically allocate model layers to available devices
|
| 60 |
+
trust_remote_code=True
|
| 61 |
+
).eval()
|
| 62 |
|
|
|
|
| 63 |
filenames = []
|
| 64 |
if files is not None:
|
| 65 |
for filepath in files:
|
|
|
|
| 69 |
sbx.files.write(filpath.name, file)
|
| 70 |
filenames.append(filpath.name)
|
| 71 |
|
| 72 |
+
# Initialize message_history if it doesn't exist
|
| 73 |
if len(message_history) == 0:
|
| 74 |
+
message_history.append(
|
| 75 |
+
{
|
| 76 |
+
"role": "system",
|
| 77 |
+
"content": system_prompt.format("- " + "\n- ".join(filenames)),
|
| 78 |
+
}
|
| 79 |
+
)
|
| 80 |
message_history.append({"role": "user", "content": user_input})
|
| 81 |
|
| 82 |
+
print("history:", message_history)
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
for notebook_html, notebook_data, messages in run_interactive_notebook(
|
| 85 |
+
model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens
|
| 86 |
+
):
|
| 87 |
+
message_history = messages
|
| 88 |
|
| 89 |
+
yield notebook_html, message_history, TMP_DIR+"jupyter-agent.ipynb"
|
| 90 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with open(save_dir, 'w', encoding='utf-8') as f:
|
| 92 |
json.dump(notebook_data, f, indent=2)
|
| 93 |
+
yield notebook_html, message_history, save_dir
|
| 94 |
|
| 95 |
def clear(msg_state):
|
| 96 |
msg_state = []
|
|
|
|
| 179 |
"""
|
| 180 |
)
|
| 181 |
|
| 182 |
+
demo.launch(share=True, ssr_mode=False)
|
utils.py
CHANGED
|
@@ -5,18 +5,18 @@ from huggingface_hub import InferenceClient
|
|
| 5 |
from e2b_code_interpreter import Sandbox
|
| 6 |
from transformers import AutoTokenizer
|
| 7 |
from traitlets.config import Config
|
|
|
|
| 8 |
|
| 9 |
config = Config()
|
| 10 |
html_exporter = HTMLExporter(config=config, template_name="classic")
|
| 11 |
|
|
|
|
|
|
|
| 12 |
|
| 13 |
with open("llama3_template.jinja", "r") as f:
|
| 14 |
llama_template = f.read()
|
| 15 |
|
| 16 |
|
| 17 |
-
MAX_TURNS = 4
|
| 18 |
-
|
| 19 |
-
|
| 20 |
def parse_exec_result_nb(execution):
|
| 21 |
"""Convert an E2B Execution object to Jupyter notebook cell output format"""
|
| 22 |
outputs = []
|
|
@@ -219,103 +219,82 @@ def update_notebook_display(notebook_data):
|
|
| 219 |
notebook_body = notebook_body.replace(bad_html_bad, "")
|
| 220 |
return notebook_body
|
| 221 |
|
| 222 |
-
def run_interactive_notebook(
|
| 223 |
notebook_data, code_cell_counter = create_base_notebook(messages)
|
| 224 |
turns = 0
|
| 225 |
|
| 226 |
-
#code_cell_counter = 0
|
| 227 |
while turns <= MAX_TURNS:
|
| 228 |
turns += 1
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
builtin_tools=["code_interpreter"],
|
| 233 |
-
add_generation_prompt=True
|
| 234 |
)
|
| 235 |
-
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
model=model,
|
| 241 |
-
prompt=model_input,
|
| 242 |
-
details=True,
|
| 243 |
-
stream=True,
|
| 244 |
-
do_sample=True,
|
| 245 |
-
repetition_penalty=1.1,
|
| 246 |
-
temperature=0.8,
|
| 247 |
-
max_new_tokens=max_new_tokens,
|
| 248 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
if len(tokens)==1:
|
| 263 |
-
create_cell=True
|
| 264 |
-
code_cell = "<|python_tag|>" in tokens[0]
|
| 265 |
-
if code_cell:
|
| 266 |
-
code_cell_counter +=1
|
| 267 |
-
else:
|
| 268 |
-
create_cell = False
|
| 269 |
-
|
| 270 |
-
# Update notebook in real-time
|
| 271 |
-
if create_cell:
|
| 272 |
-
if "<|python_tag|>" in tokens[0]:
|
| 273 |
notebook_data["cells"].append({
|
| 274 |
"cell_type": "code",
|
| 275 |
-
"execution_count":
|
| 276 |
"metadata": {},
|
| 277 |
-
"source":
|
| 278 |
"outputs": []
|
| 279 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
else:
|
|
|
|
| 281 |
notebook_data["cells"].append({
|
| 282 |
"cell_type": "markdown",
|
| 283 |
"metadata": {},
|
| 284 |
-
"source":
|
| 285 |
})
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
| 290 |
yield update_notebook_display(notebook_data), notebook_data, messages
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
# Handle code execution
|
| 294 |
-
if code_cell:
|
| 295 |
-
notebook_data["cells"][-1]["execution_count"] = code_cell_counter
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
exec_result, execution = execute_code(sbx, assistant_response)
|
| 299 |
-
messages.append({
|
| 300 |
-
"role": "assistant",
|
| 301 |
-
"content": assistant_response,
|
| 302 |
-
"tool_calls": [{
|
| 303 |
-
"type": "function",
|
| 304 |
-
"function": {
|
| 305 |
-
"name": "code_interpreter",
|
| 306 |
-
"arguments": {"code": assistant_response}
|
| 307 |
-
}
|
| 308 |
-
}]
|
| 309 |
-
})
|
| 310 |
-
messages.append({"role": "ipython", "content": parse_exec_result_llm(execution), "nbformat": parse_exec_result_nb(execution)})
|
| 311 |
-
|
| 312 |
-
# Update the last code cell with execution results
|
| 313 |
-
notebook_data["cells"][-1]["outputs"] = parse_exec_result_nb(execution)
|
| 314 |
-
update_notebook_display(notebook_data)
|
| 315 |
-
else:
|
| 316 |
-
messages.append({"role": "assistant", "content": assistant_response})
|
| 317 |
-
if tokens[-1] == "<|eot_id|>":
|
| 318 |
-
break
|
| 319 |
|
| 320 |
yield update_notebook_display(notebook_data), notebook_data, messages
|
| 321 |
|
|
@@ -325,11 +304,11 @@ def update_notebook_with_cell(notebook_data, code, output):
|
|
| 325 |
"cell_type": "code",
|
| 326 |
"execution_count": None,
|
| 327 |
"metadata": {},
|
| 328 |
-
"source": code
|
| 329 |
"outputs": [{
|
| 330 |
"output_type": "stream",
|
| 331 |
"name": "stdout",
|
| 332 |
-
"text": str(output)
|
| 333 |
}] if output else []
|
| 334 |
}
|
| 335 |
notebook_data['cells'].append(cell)
|
|
@@ -340,7 +319,7 @@ def update_notebook_with_markdown(notebook_data, markdown_text):
|
|
| 340 |
cell = {
|
| 341 |
"cell_type": "markdown",
|
| 342 |
"metadata": {},
|
| 343 |
-
"source": markdown_text
|
| 344 |
}
|
| 345 |
notebook_data['cells'].append(cell)
|
| 346 |
return notebook_data
|
|
|
|
| 5 |
from e2b_code_interpreter import Sandbox
|
| 6 |
from transformers import AutoTokenizer
|
| 7 |
from traitlets.config import Config
|
| 8 |
+
import re
|
| 9 |
|
| 10 |
config = Config()
|
| 11 |
html_exporter = HTMLExporter(config=config, template_name="classic")
|
| 12 |
|
| 13 |
+
# Constants
|
| 14 |
+
MAX_TURNS = 10
|
| 15 |
|
| 16 |
with open("llama3_template.jinja", "r") as f:
|
| 17 |
llama_template = f.read()
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
def parse_exec_result_nb(execution):
|
| 21 |
"""Convert an E2B Execution object to Jupyter notebook cell output format"""
|
| 22 |
outputs = []
|
|
|
|
| 219 |
notebook_body = notebook_body.replace(bad_html_bad, "")
|
| 220 |
return notebook_body
|
| 221 |
|
| 222 |
+
def run_interactive_notebook(model, tokenizer, messages, sbx, max_new_tokens=512):
|
| 223 |
notebook_data, code_cell_counter = create_base_notebook(messages)
|
| 224 |
turns = 0
|
| 225 |
|
|
|
|
| 226 |
while turns <= MAX_TURNS:
|
| 227 |
turns += 1
|
| 228 |
+
# Generate response using the model
|
| 229 |
+
text = tokenizer.apply_chat_template(
|
| 230 |
+
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 233 |
|
| 234 |
+
generated_ids = model.generate(
|
| 235 |
+
**model_inputs,
|
| 236 |
+
max_new_tokens=max_new_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
+
generated_ids = [
|
| 239 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 240 |
+
]
|
| 241 |
+
response_stream = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 242 |
|
| 243 |
+
# Process the full response at once
|
| 244 |
+
parts = re.split(r'(```python[\s\S]*?```)', response_stream)
|
| 245 |
|
| 246 |
+
for part in parts:
|
| 247 |
+
if part.strip():
|
| 248 |
+
if part.startswith('```python'):
|
| 249 |
+
# Extract code without the markers
|
| 250 |
+
code = re.sub(r'```python\n|```', '', part).strip()
|
| 251 |
+
code_cell_counter += 1
|
| 252 |
+
|
| 253 |
+
# Add code cell
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
notebook_data["cells"].append({
|
| 255 |
"cell_type": "code",
|
| 256 |
+
"execution_count": code_cell_counter,
|
| 257 |
"metadata": {},
|
| 258 |
+
"source": code,
|
| 259 |
"outputs": []
|
| 260 |
})
|
| 261 |
+
|
| 262 |
+
# Execute code
|
| 263 |
+
exec_result, execution = execute_code(sbx, code)
|
| 264 |
+
messages.append({
|
| 265 |
+
"role": "assistant",
|
| 266 |
+
"content": code,
|
| 267 |
+
"tool_calls": [{
|
| 268 |
+
"type": "function",
|
| 269 |
+
"function": {
|
| 270 |
+
"name": "code_interpreter",
|
| 271 |
+
"arguments": {"code": code}
|
| 272 |
+
}
|
| 273 |
+
}]
|
| 274 |
+
})
|
| 275 |
+
messages.append({
|
| 276 |
+
"role": "ipython",
|
| 277 |
+
"content": parse_exec_result_llm(execution),
|
| 278 |
+
"nbformat": parse_exec_result_nb(execution)
|
| 279 |
+
})
|
| 280 |
+
|
| 281 |
+
# Update cell with execution results
|
| 282 |
+
notebook_data["cells"][-1]["outputs"] = parse_exec_result_nb(execution)
|
| 283 |
else:
|
| 284 |
+
# Add markdown cell for non-code content
|
| 285 |
notebook_data["cells"].append({
|
| 286 |
"cell_type": "markdown",
|
| 287 |
"metadata": {},
|
| 288 |
+
"source": part.strip()
|
| 289 |
})
|
| 290 |
+
messages.append({
|
| 291 |
+
"role": "assistant",
|
| 292 |
+
"content": part.strip()
|
| 293 |
+
})
|
| 294 |
+
|
| 295 |
+
# Return the final result
|
| 296 |
yield update_notebook_display(notebook_data), notebook_data, messages
|
| 297 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
yield update_notebook_display(notebook_data), notebook_data, messages
|
| 300 |
|
|
|
|
| 304 |
"cell_type": "code",
|
| 305 |
"execution_count": None,
|
| 306 |
"metadata": {},
|
| 307 |
+
"source": code,
|
| 308 |
"outputs": [{
|
| 309 |
"output_type": "stream",
|
| 310 |
"name": "stdout",
|
| 311 |
+
"text": str(output)
|
| 312 |
}] if output else []
|
| 313 |
}
|
| 314 |
notebook_data['cells'].append(cell)
|
|
|
|
| 319 |
cell = {
|
| 320 |
"cell_type": "markdown",
|
| 321 |
"metadata": {},
|
| 322 |
+
"source": markdown_text
|
| 323 |
}
|
| 324 |
notebook_data['cells'].append(cell)
|
| 325 |
return notebook_data
|