Spaces:
Runtime error
Runtime error
Terry Zhuo
commited on
Commit
·
e19a951
1
Parent(s):
fb4be3f
- app.py +45 -22
- requirements.txt +1 -1
- utils.py +148 -77
app.py
CHANGED
|
@@ -5,6 +5,8 @@ from e2b_code_interpreter import Sandbox
|
|
| 5 |
from pathlib import Path
|
| 6 |
from peft import PeftModel
|
| 7 |
from transformers import AutoTokenizer,AutoModelForCausalLM
|
|
|
|
|
|
|
| 8 |
import json
|
| 9 |
|
| 10 |
if not get_space():
|
|
@@ -20,6 +22,7 @@ from utils import (
|
|
| 20 |
run_interactive_notebook,
|
| 21 |
create_base_notebook,
|
| 22 |
update_notebook_display,
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
E2B_API_KEY = os.environ["E2B_API_KEY"]
|
|
@@ -48,17 +51,12 @@ def execute_jupyter_agent(
|
|
| 48 |
os.makedirs(save_dir, exist_ok=True)
|
| 49 |
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
model,
|
| 58 |
-
model_name,
|
| 59 |
-
device_map="auto", # Automatically allocate model layers to available devices
|
| 60 |
-
trust_remote_code=True
|
| 61 |
-
).eval()
|
| 62 |
|
| 63 |
filenames = []
|
| 64 |
if files is not None:
|
|
@@ -69,7 +67,7 @@ def execute_jupyter_agent(
|
|
| 69 |
sbx.files.write(filpath.name, file)
|
| 70 |
filenames.append(filpath.name)
|
| 71 |
|
| 72 |
-
# Initialize message_history if
|
| 73 |
if len(message_history) == 0:
|
| 74 |
message_history.append(
|
| 75 |
{
|
|
@@ -77,24 +75,49 @@ def execute_jupyter_agent(
|
|
| 77 |
"content": system_prompt.format("- " + "\n- ".join(filenames)),
|
| 78 |
}
|
| 79 |
)
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
print("history:", message_history)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
for notebook_html, notebook_data, messages in run_interactive_notebook(
|
| 85 |
-
|
| 86 |
):
|
| 87 |
message_history = messages
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
|
| 95 |
def clear(msg_state):
|
| 96 |
msg_state = []
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
css = """
|
|
@@ -151,9 +174,9 @@ with gr.Blocks() as demo:
|
|
| 151 |
)
|
| 152 |
|
| 153 |
model = gr.Dropdown(
|
| 154 |
-
value="bigcomputer/jupycoder-7b-lora-
|
| 155 |
choices=[
|
| 156 |
-
"bigcomputer/jupycoder-7b-lora-
|
| 157 |
"Qwen/Qwen2.5-Coder-7B-Instruct"
|
| 158 |
],
|
| 159 |
label="Models"
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
from peft import PeftModel
|
| 7 |
from transformers import AutoTokenizer,AutoModelForCausalLM
|
| 8 |
+
from huggingface_hub import snapshot_download
|
| 9 |
+
from vllm import LLM, SamplingParams
|
| 10 |
import json
|
| 11 |
|
| 12 |
if not get_space():
|
|
|
|
| 22 |
run_interactive_notebook,
|
| 23 |
create_base_notebook,
|
| 24 |
update_notebook_display,
|
| 25 |
+
user_template,
|
| 26 |
)
|
| 27 |
|
| 28 |
E2B_API_KEY = os.environ["E2B_API_KEY"]
|
|
|
|
| 51 |
os.makedirs(save_dir, exist_ok=True)
|
| 52 |
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
|
| 53 |
|
| 54 |
+
sampling_params = SamplingParams(
|
| 55 |
+
temperature=0.2,
|
| 56 |
+
max_tokens=512,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
lora_path = snapshot_download(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
filenames = []
|
| 62 |
if files is not None:
|
|
|
|
| 67 |
sbx.files.write(filpath.name, file)
|
| 68 |
filenames.append(filpath.name)
|
| 69 |
|
| 70 |
+
# Initialize message_history and notebook_data if they don't exist
|
| 71 |
if len(message_history) == 0:
|
| 72 |
message_history.append(
|
| 73 |
{
|
|
|
|
| 75 |
"content": system_prompt.format("- " + "\n- ".join(filenames)),
|
| 76 |
}
|
| 77 |
)
|
| 78 |
+
current_notebook = None
|
| 79 |
+
else:
|
| 80 |
+
# Load existing notebook data from file
|
| 81 |
+
try:
|
| 82 |
+
with open(save_dir, 'r', encoding='utf-8') as f:
|
| 83 |
+
current_notebook = json.load(f)
|
| 84 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
| 85 |
+
current_notebook = None
|
| 86 |
+
|
| 87 |
+
# Add user input with is_user_prompt flag
|
| 88 |
+
message_history.append({"role": "user", "content": user_input, "is_user_prompt": True})
|
| 89 |
|
| 90 |
print("history:", message_history)
|
| 91 |
|
| 92 |
+
# Update notebook with new user prompt if we have an existing notebook
|
| 93 |
+
if current_notebook is not None:
|
| 94 |
+
current_notebook["cells"].append({
|
| 95 |
+
"cell_type": "markdown",
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"source": user_template.format(user_input.replace('\n', '<br>'))
|
| 98 |
+
})
|
| 99 |
+
# Save the updated notebook
|
| 100 |
+
with open(save_dir, 'w', encoding='utf-8') as f:
|
| 101 |
+
json.dump(current_notebook, f, indent=2)
|
| 102 |
+
|
| 103 |
for notebook_html, notebook_data, messages in run_interactive_notebook(
|
| 104 |
+
lora_path, sampling_params, message_history, sbx, notebook_data=current_notebook, max_new_tokens=max_new_tokens
|
| 105 |
):
|
| 106 |
message_history = messages
|
| 107 |
|
| 108 |
+
# Save notebook after each update
|
| 109 |
+
with open(save_dir, 'w', encoding='utf-8') as f:
|
| 110 |
+
json.dump(notebook_data, f, indent=2)
|
| 111 |
+
|
| 112 |
+
yield notebook_html, message_history, save_dir
|
| 113 |
|
| 114 |
def clear(msg_state):
|
| 115 |
msg_state = []
|
| 116 |
+
# Also clear the notebook file
|
| 117 |
+
notebook_data = create_base_notebook([])[0]
|
| 118 |
+
with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
|
| 119 |
+
json.dump(notebook_data, f, indent=2)
|
| 120 |
+
return update_notebook_display(notebook_data), msg_state
|
| 121 |
|
| 122 |
|
| 123 |
css = """
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
model = gr.Dropdown(
|
| 177 |
+
value="bigcomputer/jupycoder-7b-lora-200",
|
| 178 |
choices=[
|
| 179 |
+
"bigcomputer/jupycoder-7b-lora-200",
|
| 180 |
"Qwen/Qwen2.5-Coder-7B-Instruct"
|
| 181 |
],
|
| 182 |
label="Models"
|
requirements.txt
CHANGED
|
@@ -4,4 +4,4 @@ huggingface_hub
|
|
| 4 |
e2b-code-interpreter
|
| 5 |
transformers
|
| 6 |
traitlets
|
| 7 |
-
|
|
|
|
| 4 |
e2b-code-interpreter
|
| 5 |
transformers
|
| 6 |
traitlets
|
| 7 |
+
vllm
|
utils.py
CHANGED
|
@@ -3,12 +3,14 @@ from nbformat.v4 import new_notebook, new_markdown_cell, new_code_cell
|
|
| 3 |
from nbconvert import HTMLExporter
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from e2b_code_interpreter import Sandbox
|
| 6 |
-
from
|
| 7 |
from traitlets.config import Config
|
|
|
|
| 8 |
import re
|
| 9 |
|
| 10 |
config = Config()
|
| 11 |
html_exporter = HTMLExporter(config=config, template_name="classic")
|
|
|
|
| 12 |
|
| 13 |
# Constants
|
| 14 |
MAX_TURNS = 10
|
|
@@ -157,11 +159,20 @@ def create_base_notebook(messages):
|
|
| 157 |
"source": text
|
| 158 |
})
|
| 159 |
elif message["role"] == "user":
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
"
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
})
|
| 166 |
|
| 167 |
elif message["role"] == "assistant" and "tool_calls" in message:
|
|
@@ -219,84 +230,144 @@ def update_notebook_display(notebook_data):
|
|
| 219 |
notebook_body = notebook_body.replace(bad_html_bad, "")
|
| 220 |
return notebook_body
|
| 221 |
|
| 222 |
-
def run_interactive_notebook(
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
|
|
|
|
| 227 |
turns += 1
|
| 228 |
-
# Generate response using the model
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
-
generated_ids = [
|
| 239 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 240 |
-
]
|
| 241 |
-
response_stream = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
# Add code cell
|
| 254 |
-
notebook_data["cells"].append({
|
| 255 |
-
"cell_type": "code",
|
| 256 |
-
"execution_count": code_cell_counter,
|
| 257 |
-
"metadata": {},
|
| 258 |
-
"source": code,
|
| 259 |
-
"outputs": []
|
| 260 |
-
})
|
| 261 |
-
|
| 262 |
-
# Execute code
|
| 263 |
-
exec_result, execution = execute_code(sbx, code)
|
| 264 |
-
messages.append({
|
| 265 |
-
"role": "assistant",
|
| 266 |
-
"content": code,
|
| 267 |
-
"tool_calls": [{
|
| 268 |
-
"type": "function",
|
| 269 |
-
"function": {
|
| 270 |
-
"name": "code_interpreter",
|
| 271 |
-
"arguments": {"code": code}
|
| 272 |
-
}
|
| 273 |
-
}]
|
| 274 |
-
})
|
| 275 |
-
messages.append({
|
| 276 |
-
"role": "ipython",
|
| 277 |
-
"content": parse_exec_result_llm(execution),
|
| 278 |
-
"nbformat": parse_exec_result_nb(execution)
|
| 279 |
-
})
|
| 280 |
-
|
| 281 |
-
# Update cell with execution results
|
| 282 |
-
notebook_data["cells"][-1]["outputs"] = parse_exec_result_nb(execution)
|
| 283 |
-
else:
|
| 284 |
-
# Add markdown cell for non-code content
|
| 285 |
-
notebook_data["cells"].append({
|
| 286 |
-
"cell_type": "markdown",
|
| 287 |
-
"metadata": {},
|
| 288 |
-
"source": part.strip()
|
| 289 |
-
})
|
| 290 |
-
messages.append({
|
| 291 |
-
"role": "assistant",
|
| 292 |
-
"content": part.strip()
|
| 293 |
-
})
|
| 294 |
|
| 295 |
-
#
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
-
yield
|
|
|
|
| 300 |
|
| 301 |
def update_notebook_with_cell(notebook_data, code, output):
|
| 302 |
"""Add a code cell and its output to the notebook"""
|
|
|
|
| 3 |
from nbconvert import HTMLExporter
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from e2b_code_interpreter import Sandbox
|
| 6 |
+
from vllm.lora.request import LoRARequest
|
| 7 |
from traitlets.config import Config
|
| 8 |
+
from vllm import LLM
|
| 9 |
import re
|
| 10 |
|
| 11 |
config = Config()
|
| 12 |
html_exporter = HTMLExporter(config=config, template_name="classic")
|
| 13 |
+
BASE_MODEL = LLM(model="Qwen/Qwen2.5-Coder-7B-Instruct", enable_lora=True)
|
| 14 |
|
| 15 |
# Constants
|
| 16 |
MAX_TURNS = 10
|
|
|
|
| 159 |
"source": text
|
| 160 |
})
|
| 161 |
elif message["role"] == "user":
|
| 162 |
+
# Check if this is an actual user prompt (has is_user_prompt flag)
|
| 163 |
+
if message.get("is_user_prompt", False):
|
| 164 |
+
text = user_template.format(message["content"].replace('\n', '<br>'))
|
| 165 |
+
base_notebook["cells"].append({
|
| 166 |
+
"cell_type": "markdown",
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"source": text
|
| 169 |
+
})
|
| 170 |
+
else:
|
| 171 |
+
# This is an execution output, add as code cell output
|
| 172 |
+
base_notebook["cells"][-1]["outputs"].append({
|
| 173 |
+
"output_type": "stream",
|
| 174 |
+
"name": "stdout",
|
| 175 |
+
"text": message["content"]
|
| 176 |
})
|
| 177 |
|
| 178 |
elif message["role"] == "assistant" and "tool_calls" in message:
|
|
|
|
| 230 |
notebook_body = notebook_body.replace(bad_html_bad, "")
|
| 231 |
return notebook_body
|
| 232 |
|
| 233 |
+
def run_interactive_notebook(lora_path, sampling_params, messages, sbx, notebook_data=None, max_new_tokens=512):
|
| 234 |
+
"""
|
| 235 |
+
Run interactive notebook with model.
|
| 236 |
+
|
| 237 |
+
Args:
|
| 238 |
+
lora_path: Path to LoRA adapter
|
| 239 |
+
sampling_params: Sampling parameters for the model
|
| 240 |
+
messages: List of conversation messages
|
| 241 |
+
sbx: Sandbox environment for code execution
|
| 242 |
+
notebook_data: Existing notebook data when continuing a session
|
| 243 |
+
max_new_tokens: Maximum number of new tokens to generate
|
| 244 |
+
"""
|
| 245 |
+
# For first run or when notebook_data is not provided
|
| 246 |
+
if notebook_data is None:
|
| 247 |
+
# Create a separate list for display messages with is_user_prompt flag
|
| 248 |
+
display_messages = []
|
| 249 |
+
model_messages = [] # Clean messages for model
|
| 250 |
+
for msg in messages:
|
| 251 |
+
display_msg = msg.copy()
|
| 252 |
+
if msg["role"] == "user":
|
| 253 |
+
display_msg["is_user_prompt"] = True
|
| 254 |
+
display_messages.append(display_msg)
|
| 255 |
+
model_messages.append(msg.copy()) # Keep clean copy for model
|
| 256 |
+
notebook_data, code_cell_counter = create_base_notebook(display_messages)
|
| 257 |
+
else:
|
| 258 |
+
# For subsequent runs, use existing messages but clean them for model
|
| 259 |
+
display_messages = messages
|
| 260 |
+
model_messages = []
|
| 261 |
+
for msg in messages:
|
| 262 |
+
# Create clean copy without display flags for model
|
| 263 |
+
model_msg = msg.copy()
|
| 264 |
+
if "is_user_prompt" in model_msg:
|
| 265 |
+
del model_msg["is_user_prompt"]
|
| 266 |
+
model_messages.append(model_msg)
|
| 267 |
+
|
| 268 |
+
# Find the last code cell counter
|
| 269 |
+
code_cell_counter = 0
|
| 270 |
+
for cell in notebook_data["cells"]:
|
| 271 |
+
if cell["cell_type"] == "code" and cell.get("execution_count"):
|
| 272 |
+
code_cell_counter = max(code_cell_counter, cell["execution_count"])
|
| 273 |
|
| 274 |
+
turns = 0
|
| 275 |
+
while turns < MAX_TURNS:
|
| 276 |
turns += 1
|
| 277 |
+
# Generate response using the model with clean messages
|
| 278 |
+
print(model_messages)
|
| 279 |
+
response_stream = BASE_MODEL.chat(
|
| 280 |
+
model_messages,
|
| 281 |
+
sampling_params,
|
| 282 |
+
lora_request=LoRARequest("lora_adapter", 1, lora_path),
|
| 283 |
+
add_generation_prompt=True
|
| 284 |
+
)[0].outputs[0].text
|
| 285 |
+
|
| 286 |
+
# Check for duplicate responses
|
| 287 |
+
is_duplicate = any(
|
| 288 |
+
msg["role"] == "assistant" and msg["content"].strip() == response_stream.strip()
|
| 289 |
+
for msg in model_messages
|
| 290 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
+
if is_duplicate:
|
| 293 |
+
# If duplicate found, yield current state and break
|
| 294 |
+
yield update_notebook_display(notebook_data), notebook_data, display_messages
|
| 295 |
+
break
|
| 296 |
|
| 297 |
+
# Add the full response as an assistant message
|
| 298 |
+
assistant_msg = {
|
| 299 |
+
"role": "assistant",
|
| 300 |
+
"content": response_stream
|
| 301 |
+
}
|
| 302 |
+
model_messages.append(assistant_msg.copy())
|
| 303 |
+
display_messages.append(assistant_msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
+
# Check if response contains code block
|
| 306 |
+
code_match = re.search(r'```python\n(.*?)```', response_stream, re.DOTALL)
|
| 307 |
+
if code_match:
|
| 308 |
+
# Extract and execute the code
|
| 309 |
+
code = code_match.group(1).strip()
|
| 310 |
+
code_cell_counter += 1
|
| 311 |
+
|
| 312 |
+
# Add code cell
|
| 313 |
+
notebook_data["cells"].append({
|
| 314 |
+
"cell_type": "code",
|
| 315 |
+
"execution_count": code_cell_counter,
|
| 316 |
+
"metadata": {},
|
| 317 |
+
"source": code,
|
| 318 |
+
"outputs": []
|
| 319 |
+
})
|
| 320 |
+
|
| 321 |
+
# Execute code and get results
|
| 322 |
+
exec_result, execution = execute_code(sbx, code)
|
| 323 |
+
|
| 324 |
+
# Get execution results in notebook format
|
| 325 |
+
outputs = parse_exec_result_nb(execution)
|
| 326 |
+
|
| 327 |
+
# Create text-only version for user message
|
| 328 |
+
user_content = []
|
| 329 |
+
for output in outputs:
|
| 330 |
+
if output.get('output_type') == 'stream':
|
| 331 |
+
user_content.append(output['text'])
|
| 332 |
+
elif output.get('output_type') == 'error':
|
| 333 |
+
user_content.append('\n'.join(output['traceback']))
|
| 334 |
+
elif output.get('output_type') in ['execute_result', 'display_data']:
|
| 335 |
+
data = output.get('data', {})
|
| 336 |
+
if 'text/plain' in data:
|
| 337 |
+
user_content.append('\n'.join(data['text/plain']))
|
| 338 |
+
if any(key.startswith('image/') for key in data.keys()):
|
| 339 |
+
user_content.append('<image>')
|
| 340 |
+
|
| 341 |
+
# Create execution result message
|
| 342 |
+
user_msg = {
|
| 343 |
+
"role": "user",
|
| 344 |
+
"content": '\n'.join(user_content)
|
| 345 |
+
}
|
| 346 |
+
# Add clean version to model messages
|
| 347 |
+
model_messages.append(user_msg.copy())
|
| 348 |
+
# Add version with display flag to display messages
|
| 349 |
+
display_msg = user_msg.copy()
|
| 350 |
+
display_msg["is_user_prompt"] = False
|
| 351 |
+
display_messages.append(display_msg)
|
| 352 |
+
|
| 353 |
+
# Update cell with execution results
|
| 354 |
+
notebook_data["cells"][-1]["outputs"] = outputs
|
| 355 |
+
|
| 356 |
+
# Yield intermediate results after each turn
|
| 357 |
+
yield update_notebook_display(notebook_data), notebook_data, display_messages
|
| 358 |
+
else:
|
| 359 |
+
# No code in this turn, add as markdown and break
|
| 360 |
+
notebook_data["cells"].append({
|
| 361 |
+
"cell_type": "markdown",
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"source": response_stream
|
| 364 |
+
})
|
| 365 |
+
# Yield final results and break
|
| 366 |
+
yield update_notebook_display(notebook_data), notebook_data, display_messages
|
| 367 |
+
break
|
| 368 |
|
| 369 |
+
# Final yield in case we hit MAX_TURNS
|
| 370 |
+
yield update_notebook_display(notebook_data), notebook_data, display_messages
|
| 371 |
|
| 372 |
def update_notebook_with_cell(notebook_data, code, output):
|
| 373 |
"""Add a code cell and its output to the notebook"""
|