Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torchvision
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torch.optim as optim
|
| 8 |
+
|
| 9 |
+
# This is just to show an interface where one draws a number and gets prediction.
|
| 10 |
+
|
| 11 |
+
n_epochs = 10
|
| 12 |
+
batch_size_train = 128
|
| 13 |
+
batch_size_test = 1000
|
| 14 |
+
learning_rate = 0.01
|
| 15 |
+
momentum = 0.5
|
| 16 |
+
log_interval = 10
|
| 17 |
+
random_seed = 1
|
| 18 |
+
TRAIN_CUTOFF = 10
|
| 19 |
+
MODEL_PATH = 'model'
|
| 20 |
+
METRIC_PATH = os.path.join(MODEL_PATH,'metrics.json')
|
| 21 |
+
MODEL_WEIGHTS_PATH = os.path.join(MODEL_PATH,'mnist_model.pth')
|
| 22 |
+
OPTIMIZER_PATH = os.path.join(MODEL_PATH,'optimizer.pth')
|
| 23 |
+
REPOSITORY_DIR = "data"
|
| 24 |
+
LOCAL_DIR = 'data_local'
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 30 |
+
MODEL_REPO = 'mnist-adversarial-model'
|
| 31 |
+
HF_DATASET ="mnist-adversarial-dataset"
|
| 32 |
+
DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
|
| 33 |
+
MODEL_REPO_URL = f"https://huggingface.co/model/chrisjay/{MODEL_REPO}"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
torch.backends.cudnn.enabled = False
|
| 37 |
+
torch.manual_seed(random_seed)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
TRAIN_TRANSFORM = torchvision.transforms.Compose([
|
| 42 |
+
torchvision.transforms.ToTensor(),
|
| 43 |
+
torchvision.transforms.Normalize(
|
| 44 |
+
(0.1307,), (0.3081,))
|
| 45 |
+
])
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Source: https://nextjournal.com/gkoehler/pytorch-mnist
|
| 50 |
+
class MNIST_Model(nn.Module):
|
| 51 |
+
def __init__(self):
|
| 52 |
+
super(MNIST_Model, self).__init__()
|
| 53 |
+
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
|
| 54 |
+
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
|
| 55 |
+
self.conv2_drop = nn.Dropout2d()
|
| 56 |
+
self.fc1 = nn.Linear(320, 50)
|
| 57 |
+
self.fc2 = nn.Linear(50, 10)
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
x = F.relu(F.max_pool2d(self.conv1(x), 2))
|
| 61 |
+
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
|
| 62 |
+
x = x.view(-1, 320)
|
| 63 |
+
x = F.relu(self.fc1(x))
|
| 64 |
+
x = F.dropout(x, training=self.training)
|
| 65 |
+
x = self.fc2(x)
|
| 66 |
+
return F.log_softmax(x)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
random_seed = 1
|
| 72 |
+
torch.backends.cudnn.enabled = False
|
| 73 |
+
torch.manual_seed(random_seed)
|
| 74 |
+
|
| 75 |
+
network = MNIST_Model() #Initialize the model with random weights
|
| 76 |
+
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
|
| 77 |
+
momentum=momentum)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Train
|
| 81 |
+
#train(n_epochs,network,optimizer)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def image_classifier(inp):
|
| 85 |
+
"""
|
| 86 |
+
It takes an image as input and returns a dictionary of class labels and their corresponding
|
| 87 |
+
confidence scores.
|
| 88 |
+
|
| 89 |
+
:param inp: the image to be classified
|
| 90 |
+
:return: A dictionary of the class index and the confidence value.
|
| 91 |
+
"""
|
| 92 |
+
input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0)
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
|
| 95 |
+
prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
|
| 96 |
+
#pred_number = prediction.data.max(1, keepdim=True)[1]
|
| 97 |
+
sorted_prediction = torch.sort(prediction,descending=True)
|
| 98 |
+
confidences={}
|
| 99 |
+
for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()):
|
| 100 |
+
confidences.update({s:v})
|
| 101 |
+
return confidences
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def main():
|
| 107 |
+
block = gr.Blocks()
|
| 108 |
+
|
| 109 |
+
with block:
|
| 110 |
+
|
| 111 |
+
with gr.Row():
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
image_input =gr.inputs.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil")
|
| 115 |
+
label_output = gr.outputs.Label(num_top_classes=2)
|
| 116 |
+
|
| 117 |
+
image_input.change(image_classifier,inputs = [image_input],outputs=[label_output])
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
block.launch()
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
main()
|