Spaces:
Sleeping
Sleeping
Clement Vachet
commited on
Commit
·
b85c571
1
Parent(s):
a35fd46
docs: add section about hugging face deployment
Browse files
README.md
CHANGED
|
@@ -16,21 +16,33 @@ short_description: Object detection Lambda
|
|
| 16 |
- Front-end: user interface via Gradio library
|
| 17 |
- Back-end: use of AWS Lambda function to run deployed ML models
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
## 1. Local development
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
bash
|
| 25 |
> docker build -t object-detection-lambda .
|
| 26 |
|
| 27 |
-
|
| 28 |
|
| 29 |
bash
|
| 30 |
|
| 31 |
> docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
Use of Gradio library for web interface
|
| 35 |
|
| 36 |
<b>Note:</b> The environment variable ```AWS_API``` should point to the local container
|
|
@@ -42,7 +54,7 @@ Command line for execution:
|
|
| 42 |
The Gradio web application should now be accessible at http://localhost:7860
|
| 43 |
|
| 44 |
|
| 45 |
-
### 1.
|
| 46 |
|
| 47 |
Example of a prediction request
|
| 48 |
|
|
@@ -142,3 +154,12 @@ python
|
|
| 142 |
> --file ./tests/data/boats.jpg \
|
| 143 |
> --model yolos-small
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
- Front-end: user interface via Gradio library
|
| 17 |
- Back-end: use of AWS Lambda function to run deployed ML models
|
| 18 |
|
| 19 |
+
|
| 20 |
+
<b>Menu: </b>
|
| 21 |
+
- [Local development](#1-local-development)
|
| 22 |
+
- [AWS deployment](#2-deployment-to-aws)
|
| 23 |
+
- [Hugging Face deployment](#3-deployment-to-hugging-face)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
## 1. Local development
|
| 27 |
|
| 28 |
+
### 1.1. Build and run the Docker container
|
| 29 |
|
| 30 |
+
<details>
|
| 31 |
+
|
| 32 |
+
Step 1 - Building the docker image
|
| 33 |
|
| 34 |
bash
|
| 35 |
> docker build -t object-detection-lambda .
|
| 36 |
|
| 37 |
+
Step 2 - Running the docker container locally
|
| 38 |
|
| 39 |
bash
|
| 40 |
|
| 41 |
> docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
|
| 42 |
|
| 43 |
+
</details>
|
| 44 |
+
|
| 45 |
+
### 1.2. Execution via user interface
|
| 46 |
Use of Gradio library for web interface
|
| 47 |
|
| 48 |
<b>Note:</b> The environment variable ```AWS_API``` should point to the local container
|
|
|
|
| 54 |
The Gradio web application should now be accessible at http://localhost:7860
|
| 55 |
|
| 56 |
|
| 57 |
+
### 1.3. Execution via command line:
|
| 58 |
|
| 59 |
Example of a prediction request
|
| 60 |
|
|
|
|
| 154 |
> --file ./tests/data/boats.jpg \
|
| 155 |
> --model yolos-small
|
| 156 |
|
| 157 |
+
|
| 158 |
+
## 3. Deployment to Hugging Face
|
| 159 |
+
|
| 160 |
+
This web application is available on Hugging Face
|
| 161 |
+
|
| 162 |
+
Hugging Face space URL:
|
| 163 |
+
https://huggingface.co/spaces/cvachet/object_detection_lambda
|
| 164 |
+
|
| 165 |
+
Note: This space uses the ML model deployed on AWS Lambda
|