File size: 47,640 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "Support Vector Regression Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions designed to teach and test your understanding of Support Vector Regression (SVR), starting from fundamental concepts to advanced topics like kernels, hyperparameter tuning, epsilon-insensitive loss, and real-world scenarios.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main goal of Support Vector Regression (SVR)?",
      "options": [
        "To classify data points",
        "To cluster similar data points",
        "To reduce dimensionality",
        "To predict a continuous target variable while ignoring small errors within a margin"
      ],
      "correctAnswerIndex": 3,
      "explanation": "SVR tries to fit a function within a tube (epsilon-insensitive margin) around the true target values, minimizing errors outside the tube."
    },
    {
      "id": 2,
      "questionText": "In SVR, what does the epsilon (ε) parameter represent?",
      "options": [
        "Regularization strength",
        "Width of the margin in which no penalty is given for errors",
        "Learning rate",
        "Kernel type"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Epsilon defines a margin of tolerance where predictions within ε of the true value are not penalized."
    },
    {
      "id": 3,
      "questionText": "Which kernel is commonly used in SVR for non-linear relationships?",
      "options": [
        "All of the above",
        "Polynomial kernel",
        "Linear kernel",
        "RBF (Radial Basis Function) kernel"
      ],
      "correctAnswerIndex": 0,
      "explanation": "SVR can use linear, polynomial, or RBF kernels depending on the nature of the data."
    },
    {
      "id": 4,
      "questionText": "Scenario: SVR applied to a dataset with non-linear trend. Linear kernel used. Observation?",
      "options": [
        "Training error zero",
        "Epsilon ignored",
        "Model performs perfectly",
        "Model underfits, poor predictions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "A linear kernel cannot capture non-linear relationships, leading to underfitting."
    },
    {
      "id": 5,
      "questionText": "Scenario: SVR with RBF kernel applied. Observation: very high gamma. Effect?",
      "options": [
        "Overfitting, model follows data too closely",
        "Epsilon ignored",
        "Underfitting",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High gamma makes the kernel narrow, causing the model to fit noise and overfit the training data."
    },
    {
      "id": 6,
      "questionText": "Scenario: SVR applied to dataset with features in different scales. Observation: model performs poorly. Reason?",
      "options": [
        "Intercept missing",
        "Kernel type wrong",
        "Epsilon too high",
        "SVR is sensitive to feature scaling"
      ],
      "correctAnswerIndex": 3,
      "explanation": "SVR requires feature scaling (standardization/normalization) to perform correctly, especially with RBF or polynomial kernels."
    },
    {
      "id": 7,
      "questionText": "Scenario: SVR applied with linear kernel and C too small. Observation?",
      "options": [
        "Model overfits",
        "Model underfits, wide margin, many points outside epsilon",
        "Intercept removed",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small C gives weak regularization, allowing a wide margin and underfitting the data."
    },
    {
      "id": 8,
      "questionText": "Scenario: SVR applied with epsilon too large. Observation?",
      "options": [
        "Kernel type irrelevant",
        "Model overfits",
        "Many predictions inside margin, poor accuracy",
        "C ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Large epsilon makes the model insensitive to small deviations, reducing accuracy."
    },
    {
      "id": 9,
      "questionText": "Scenario: SVR with RBF kernel. Observation: gamma too small. Effect?",
      "options": [
        "Overfits",
        "Epsilon ignored",
        "Model underfits, unable to capture complex patterns",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small gamma produces a wide kernel, leading to underfitting and smooth predictions."
    },
    {
      "id": 10,
      "questionText": "Scenario: SVR applied to dataset with outliers. Observation: model robust if epsilon-insensitive loss used. Why?",
      "options": [
        "C is irrelevant",
        "Outliers always ignored",
        "Errors within epsilon not penalized, reducing influence of small deviations",
        "Kernel type changes automatically"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Epsilon-insensitive loss ignores small deviations, making SVR less sensitive to minor noise."
    },
    {
      "id": 11,
      "questionText": "Scenario: SVR applied on dataset with non-linear trends. Comparison: Linear vs RBF kernel. Observation?",
      "options": [
        "Linear kernel always better",
        "Training error zero",
        "Epsilon irrelevant",
        "RBF performs better on non-linear data"
      ],
      "correctAnswerIndex": 3,
      "explanation": "RBF kernel can capture non-linear patterns, unlike linear kernel."
    },
    {
      "id": 12,
      "questionText": "Scenario: SVR applied with C too high. Observation?",
      "options": [
        "Epsilon ignored",
        "Kernel type irrelevant",
        "Overfitting, model tries to reduce training error aggressively",
        "Underfitting"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High C penalizes errors heavily, making the model fit training points closely and overfit."
    },
    {
      "id": 13,
      "questionText": "Scenario: SVR applied to dataset with standardized features. Observation: model performs well. Why?",
      "options": [
        "Feature scaling ensures fair distance computation in kernel functions",
        "C irrelevant",
        "Epsilon ignored",
        "Intercept removed"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Scaling is crucial because SVR uses distances (especially RBF/polynomial) which are affected by feature scales."
    },
    {
      "id": 14,
      "questionText": "Scenario: SVR applied with polynomial kernel degree 3. Observation: model captures cubic trends. Limitation?",
      "options": [
        "Underfits always",
        "Epsilon ignored",
        "May overfit if degree too high or C large",
        "Intercept removed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Higher-degree polynomial kernels can model complex trends but may overfit if hyperparameters not tuned."
    },
    {
      "id": 15,
      "questionText": "Scenario: SVR applied with epsilon=0.1. Observation: residuals smaller than 0.1 ignored. Effect?",
      "options": [
        "Overfits all points",
        "Model focuses only on significant errors, reducing sensitivity to noise",
        "Training error zero",
        "C irrelevant"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Residuals within epsilon are not penalized, allowing robustness to small fluctuations."
    },
    {
      "id": 16,
      "questionText": "Scenario: SVR applied to dataset with few samples and high dimensions. Observation: kernel choice critical. Why?",
      "options": [
        "Linear kernel always overfits",
        "C too small",
        "Epsilon irrelevant",
        "High-dimensional kernels like RBF can overfit small samples"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High-dimensional kernels can overfit small datasets; careful kernel selection is needed."
    },
    {
      "id": 17,
      "questionText": "Scenario: SVR applied with RBF kernel. Observation: both C and gamma tuned via grid search. Purpose?",
      "options": [
        "Always minimize training error",
        "Ignore epsilon",
        "Find optimal hyperparameters balancing bias and variance",
        "Remove intercept"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Grid search helps select C and gamma that prevent under/overfitting and optimize generalization."
    },
    {
      "id": 18,
      "questionText": "Scenario: SVR applied with very small epsilon. Observation?",
      "options": [
        "C irrelevant",
        "Underfits",
        "Model tries to fit nearly all points, risk of overfitting",
        "Kernel type irrelevant"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small epsilon reduces tolerance, making SVR try to fit almost all data points, increasing risk of overfitting."
    },
    {
      "id": 19,
      "questionText": "Scenario: SVR applied to dataset with noisy measurements. Observation: epsilon too small. Effect?",
      "options": [
        "Underfits",
        "Training error zero",
        "Intercept ignored",
        "Model overfits noise"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small epsilon forces model to fit noisy points, reducing generalization."
    },
    {
      "id": 20,
      "questionText": "Scenario: SVR with RBF kernel. Observation: gamma increased while C fixed. Effect?",
      "options": [
        "Underfits",
        "Model captures fine patterns but may overfit",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Higher gamma makes the kernel more sensitive, fitting data tightly and risking overfitting."
    },
    {
      "id": 21,
      "questionText": "Scenario: SVR applied to dataset with outliers. Observation: large epsilon. Effect?",
      "options": [
        "Model ignores small deviations and is robust to outliers",
        "Overfits outliers",
        "Underfits severely",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Large epsilon reduces sensitivity to small deviations, providing robustness to outliers."
    },
    {
      "id": 22,
      "questionText": "Scenario: SVR applied with polynomial kernel degree=5, C and epsilon tuned. Observation?",
      "options": [
        "Training error zero",
        "Model can capture complex non-linear trends with controlled overfitting",
        "Intercept removed",
        "Underfits always"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Polynomial kernel allows modeling non-linear trends; tuning C and epsilon controls overfitting."
    },
    {
      "id": 23,
      "questionText": "Scenario: SVR applied with linear kernel to a mostly linear dataset. Observation?",
      "options": [
        "Model overfits",
        "Model performs well, simple and interpretable",
        "Epsilon irrelevant",
        "Underfits"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Linear kernel is ideal for linear relationships, providing simplicity and interpretability."
    },
    {
      "id": 24,
      "questionText": "Scenario: SVR applied to dataset with standardized features and epsilon=0.2. Observation?",
      "options": [
        "C irrelevant",
        "Residuals within 0.2 are ignored, reducing sensitivity to minor noise",
        "Overfits all points",
        "Intercept removed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Epsilon-insensitive loss allows ignoring minor deviations, improving robustness."
    },
    {
      "id": 25,
      "questionText": "Scenario: SVR applied to dataset with varying scales. Observation: without scaling, RBF kernel fails. Reason?",
      "options": [
        "C irrelevant",
        "Linear kernel always fails",
        "Distance-based kernels are affected by feature scales",
        "Epsilon ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "RBF kernel depends on Euclidean distance, so unscaled features distort similarity computation."
    },
    {
      "id": 26,
      "questionText": "Scenario: SVR applied to stock price dataset with non-linear trends. Linear kernel used. Observation?",
      "options": [
        "Overfits perfectly",
        "Underfits, poor predictions",
        "Intercept ignored",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Linear kernel cannot capture non-linear trends, leading to underfitting in stock price prediction."
    },
    {
      "id": 27,
      "questionText": "Scenario: SVR applied with RBF kernel to housing dataset. Observation: gamma too high. Effect?",
      "options": [
        "Overfitting, model captures noise",
        "Training error zero",
        "Epsilon ignored",
        "Underfitting"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High gamma makes the kernel too narrow, causing overfitting to training data."
    },
    {
      "id": 28,
      "questionText": "Scenario: SVR applied to dataset with features in different ranges. Observation: model performs poorly. Solution?",
      "options": [
        "Use linear kernel only",
        "Standardize or normalize features",
        "Decrease C",
        "Increase epsilon"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Scaling ensures fair distance calculation for kernel-based SVR models."
    },
    {
      "id": 29,
      "questionText": "Scenario: SVR applied with small C. Observation?",
      "options": [
        "Intercept ignored",
        "Training error zero",
        "Wide margin, underfitting",
        "Overfitting"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Small C allows more points outside the margin, leading to underfitting."
    },
    {
      "id": 30,
      "questionText": "Scenario: SVR applied with very large epsilon. Observation?",
      "options": [
        "Training error zero",
        "Overfits noise",
        "C irrelevant",
        "Model ignores small deviations, accuracy drops"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Large epsilon reduces sensitivity to deviations, decreasing accuracy."
    },
    {
      "id": 31,
      "questionText": "Scenario: SVR applied with polynomial kernel degree=3. Observation: overfitting on small dataset. Solution?",
      "options": [
        "Ignore epsilon",
        "Increase gamma",
        "Reduce degree or tune C and epsilon",
        "Remove kernel"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reducing polynomial degree or tuning hyperparameters prevents overfitting on small datasets."
    },
    {
      "id": 32,
      "questionText": "Scenario: SVR applied with RBF kernel. Observation: small gamma. Effect?",
      "options": [
        "Overfits",
        "Training error zero",
        "Intercept ignored",
        "Model underfits, too smooth predictions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small gamma creates a wide kernel, unable to capture complex patterns, leading to underfitting."
    },
    {
      "id": 33,
      "questionText": "Scenario: SVR applied to time-series dataset. Observation: epsilon too small. Effect?",
      "options": [
        "Training error zero",
        "Intercept ignored",
        "Underfits",
        "Model overfits minor fluctuations"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small epsilon forces the model to fit almost all data points, including noise."
    },
    {
      "id": 34,
      "questionText": "Scenario: SVR applied with RBF kernel to noisy dataset. Observation: large epsilon. Effect?",
      "options": [
        "Underfits severely",
        "Model ignores small deviations, robust to noise",
        "Overfits noise",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Epsilon-insensitive loss ignores minor deviations, reducing sensitivity to noise."
    },
    {
      "id": 35,
      "questionText": "Scenario: SVR applied with cross-validation on C and gamma. Purpose?",
      "options": [
        "Always minimize training error",
        "Find optimal hyperparameters to balance bias and variance",
        "Remove intercept",
        "Ignore epsilon"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Cross-validation selects the best C and gamma values to improve generalization and prevent over/underfitting."
    },
    {
      "id": 36,
      "questionText": "Scenario: SVR applied to housing dataset with RBF kernel. Observation: predictions very smooth. Reason?",
      "options": [
        "Kernel linear",
        "Gamma too small, wide kernel",
        "Epsilon too small",
        "C too high"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small gamma causes the kernel to be wide, resulting in smooth underfitting predictions."
    },
    {
      "id": 37,
      "questionText": "Scenario: SVR applied to dataset with standardized features. Observation: improved performance. Why?",
      "options": [
        "C irrelevant",
        "Feature scaling ensures fair distance computation in kernel",
        "Epsilon ignored",
        "Intercept removed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Scaling is necessary because kernel functions depend on feature distances."
    },
    {
      "id": 38,
      "questionText": "Scenario: SVR applied with RBF kernel. Observation: overfitting. Recommended action?",
      "options": [
        "Decrease gamma or C, increase epsilon",
        "Increase gamma",
        "Remove kernel",
        "Decrease epsilon only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reducing gamma or C and increasing epsilon reduces overfitting by simplifying the model."
    },
    {
      "id": 39,
      "questionText": "Scenario: SVR applied to dataset with outliers. Observation: model robust. Reason?",
      "options": [
        "Epsilon-insensitive loss ignores small deviations",
        "C too high",
        "Gamma too small",
        "Kernel linear"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Epsilon-insensitive loss reduces impact of small errors, making SVR robust to noise/outliers."
    },
    {
      "id": 40,
      "questionText": "Scenario: SVR applied with polynomial kernel degree 5, small dataset. Observation: overfitting. Solution?",
      "options": [
        "Ignore epsilon",
        "Increase gamma",
        "Reduce degree or tune C and epsilon",
        "Remove kernel"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High-degree polynomial can overfit; tuning reduces complexity and improves generalization."
    },
    {
      "id": 41,
      "questionText": "Scenario: SVR applied to financial dataset. Observation: linear kernel performs well. Reason?",
      "options": [
        "Linear kernel always best",
        "C irrelevant",
        "Data has mostly linear relationship",
        "Epsilon ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Linear kernel suffices if the underlying relationship is mostly linear."
    },
    {
      "id": 42,
      "questionText": "Scenario: SVR applied with large epsilon. Observation: residuals within margin ignored. Effect?",
      "options": [
        "Model ignores small deviations, reduces sensitivity to noise",
        "Overfits minor fluctuations",
        "Underfits severely",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Residuals within epsilon are not penalized, making SVR robust to minor deviations."
    },
    {
      "id": 43,
      "questionText": "Scenario: SVR applied to time-series with RBF kernel. Observation: gamma too high. Effect?",
      "options": [
        "Overfits, model fits noise",
        "Underfits",
        "Training error zero",
        "Epsilon ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High gamma makes kernel very narrow, overfitting small fluctuations in time-series."
    },
    {
      "id": 44,
      "questionText": "Scenario: SVR applied to dataset with 50 features, 200 samples. Observation: gamma and C tuned via grid search. Advantage?",
      "options": [
        "Remove intercept",
        "Training error minimized only",
        "Optimal bias-variance tradeoff",
        "Ignore epsilon"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Grid search finds hyperparameters that optimize generalization."
    },
    {
      "id": 45,
      "questionText": "Scenario: SVR applied to dataset with noise. Observation: small epsilon. Effect?",
      "options": [
        "Underfits",
        "Overfits noise, poor generalization",
        "C irrelevant",
        "Intercept removed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small epsilon reduces tolerance, forcing the model to fit almost all points, including noise."
    },
    {
      "id": 46,
      "questionText": "Scenario: SVR applied with linear kernel to mostly linear dataset. Observation?",
      "options": [
        "Epsilon ignored",
        "Underfits",
        "Good performance, simple and interpretable",
        "Overfits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Linear kernel works well for mostly linear relationships."
    },
    {
      "id": 47,
      "questionText": "Scenario: SVR applied with RBF kernel, standardized features, tuned C and gamma. Observation?",
      "options": [
        "Overfits always",
        "Model captures non-linear trends accurately",
        "Intercept ignored",
        "Underfits always"
      ],
      "correctAnswerIndex": 1,
      "explanation": "RBF kernel with proper tuning captures non-linear trends effectively."
    },
    {
      "id": 48,
      "questionText": "Scenario: SVR applied with polynomial kernel degree 4. Observation: training error very low but test error high. Reason?",
      "options": [
        "C too small",
        "Overfitting due to high-degree polynomial",
        "Underfitting",
        "Epsilon too large"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-degree polynomial can fit training data too closely, leading to overfitting."
    },
    {
      "id": 49,
      "questionText": "Scenario: SVR applied to dataset with features of different scales. Observation: model poor. Solution?",
      "options": [
        "Decrease gamma",
        "Increase epsilon",
        "Standardize features",
        "Use linear kernel only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Feature scaling is essential because SVR uses distances in kernel computation."
    },
    {
      "id": 50,
      "questionText": "Scenario: SVR applied to stock market dataset with RBF kernel. Observation: epsilon-insensitive tube too wide. Effect?",
      "options": [
        "C irrelevant",
        "Training error zero",
        "Model overfits",
        "Many small deviations ignored, poor accuracy"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Wide epsilon tube ignores small deviations, reducing prediction accuracy."
    },
    {
      "id": 51,
      "questionText": "Scenario: SVR applied to high-frequency stock price data. Observation: RBF kernel with very small gamma. Effect?",
      "options": [
        "Epsilon ignored",
        "Training error zero",
        "Overfits noise",
        "Underfits, fails to capture rapid changes"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small gamma produces a wide kernel, smoothing predictions and missing rapid fluctuations."
    },
    {
      "id": 52,
      "questionText": "Scenario: SVR applied to real estate dataset. Observation: polynomial kernel degree 6 overfits. Solution?",
      "options": [
        "Remove kernel",
        "Reduce polynomial degree or tune C and epsilon",
        "Increase epsilon only",
        "Increase gamma"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-degree polynomials can model noise; lowering degree or tuning parameters prevents overfitting."
    },
    {
      "id": 53,
      "questionText": "Scenario: SVR applied with RBF kernel, large epsilon, and small C. Observation?",
      "options": [
        "Overfits",
        "Model underfits, ignores small deviations, wide margin",
        "Intercept ignored",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small C and large epsilon reduce sensitivity to errors, causing underfitting."
    },
    {
      "id": 54,
      "questionText": "Scenario: SVR applied to noisy sensor dataset. Observation: small epsilon, large C. Effect?",
      "options": [
        "Kernel ignored",
        "Underfits",
        "Training error zero",
        "Overfits noise, poor generalization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small epsilon and large C force the model to fit almost all points, including noise."
    },
    {
      "id": 55,
      "questionText": "Scenario: SVR applied with RBF kernel on financial data. Observation: gamma tuned via cross-validation. Purpose?",
      "options": [
        "Ignore epsilon",
        "Always minimize training error",
        "Balance bias and variance for better generalization",
        "Remove intercept"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Cross-validation helps find gamma that prevents under/overfitting and improves prediction on unseen data."
    },
    {
      "id": 56,
      "questionText": "Scenario: SVR applied to a dataset with highly correlated features. Observation: performance similar across linear and RBF kernels. Reason?",
      "options": [
        "C too small",
        "Epsilon ignored",
        "Data relationship mostly linear",
        "Linear kernel always best"
      ],
      "correctAnswerIndex": 2,
      "explanation": "When features have linear relationships, both linear and RBF kernels give similar performance."
    },
    {
      "id": 57,
      "questionText": "Scenario: SVR applied to dataset with extreme outliers. Observation: large epsilon. Effect?",
      "options": [
        "Overfits outliers",
        "Training error zero",
        "Underfits completely",
        "Reduces sensitivity to outliers, robust predictions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Large epsilon ignores small deviations, reducing outlier influence."
    },
    {
      "id": 58,
      "questionText": "Scenario: SVR applied with polynomial kernel degree 5. Observation: low-degree coefficients dominate. Reason?",
      "options": [
        "Epsilon ignored",
        "Overfits noise",
        "High-degree terms penalized by regularization, low-degree terms capture main trend",
        "Training error zero"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Regularization and parameter tuning often shrink high-degree polynomial effects, letting low-degree terms dominate."
    },
    {
      "id": 59,
      "questionText": "Scenario: SVR applied to dataset with 50 features and 200 samples. Observation: gamma and C tuned via grid search. Advantage?",
      "options": [
        "Optimizes bias-variance tradeoff",
        "Epsilon irrelevant",
        "Always minimize training error",
        "Removes intercept"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Grid search selects hyperparameters that generalize best to unseen data."
    },
    {
      "id": 60,
      "questionText": "Scenario: SVR applied to time-series dataset with RBF kernel. Observation: gamma high, C high, epsilon small. Effect?",
      "options": [
        "Overfits training data, poor generalization",
        "Intercept irrelevant",
        "Underfits",
        "Residuals ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High gamma and C with small epsilon make SVR fit almost all points, including noise."
    },
    {
      "id": 61,
      "questionText": "Scenario: SVR applied to housing data with standardized features. Observation: performance improved. Reason?",
      "options": [
        "Linear kernel preferred",
        "Kernel distances computed correctly after standardization",
        "C irrelevant",
        "Epsilon ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standardization ensures kernel computations are not skewed by feature scales."
    },
    {
      "id": 62,
      "questionText": "Scenario: SVR applied to stock dataset. Observation: predictions smooth, underfitting. Likely cause?",
      "options": [
        "Training error zero",
        "C too high",
        "Kernel linear",
        "Gamma too small or epsilon too large"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Small gamma or large epsilon leads to overly smooth predictions, missing complex trends."
    },
    {
      "id": 63,
      "questionText": "Scenario: SVR applied to dataset with missing values. Observation: training fails. Solution?",
      "options": [
        "Impute or remove missing values",
        "Decrease C",
        "Reduce epsilon",
        "Change kernel"
      ],
      "correctAnswerIndex": 0,
      "explanation": "SVR cannot handle missing values; preprocessing is required."
    },
    {
      "id": 64,
      "questionText": "Scenario: SVR applied to dataset with outliers. Observation: small epsilon, high C. Effect?",
      "options": [
        "Underfits",
        "Overfits outliers",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Small epsilon and high C force the model to fit all points, including outliers."
    },
    {
      "id": 65,
      "questionText": "Scenario: SVR applied with linear kernel to mostly linear data. Observation: performance comparable to RBF. Reason?",
      "options": [
        "C too small",
        "Epsilon ignored",
        "Linear relationship dominant in data",
        "Linear kernel always best"
      ],
      "correctAnswerIndex": 2,
      "explanation": "If the underlying trend is linear, linear and RBF kernels give similar results."
    },
    {
      "id": 66,
      "questionText": "Scenario: SVR applied with polynomial kernel degree 4 on small dataset. Observation: overfitting. Solution?",
      "options": [
        "Remove kernel",
        "Increase gamma",
        "Ignore epsilon",
        "Reduce degree or tune C and epsilon"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High-degree polynomial can overfit small datasets; tuning reduces complexity."
    },
    {
      "id": 67,
      "questionText": "Scenario: SVR applied to dataset with noisy features. Observation: epsilon-insensitive tube helps. Effect?",
      "options": [
        "Training error zero",
        "Overfits all points",
        "Model robust to minor noise, reduces variance",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Epsilon-insensitive loss ignores small deviations, improving robustness."
    },
    {
      "id": 68,
      "questionText": "Scenario: SVR applied to real estate dataset. Observation: small gamma, large epsilon. Effect?",
      "options": [
        "Underfitting, predictions too smooth",
        "Training error zero",
        "Overfitting",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small gamma widens the kernel, large epsilon ignores deviations, producing smooth underfit predictions."
    },
    {
      "id": 69,
      "questionText": "Scenario: SVR applied to dataset with highly non-linear trends. Observation: RBF kernel tuned well. Effect?",
      "options": [
        "Training error zero",
        "Captures non-linear patterns accurately",
        "Underfits",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Properly tuned RBF kernel models non-linear trends effectively."
    },
    {
      "id": 70,
      "questionText": "Scenario: SVR applied to time-series dataset. Observation: predictions lag behind sudden spikes. Likely cause?",
      "options": [
        "Kernel linear",
        "Epsilon too large, gamma too small",
        "C too high",
        "Training error zero"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Large epsilon ignores small deviations; small gamma smooths predictions, causing lag."
    },
    {
      "id": 71,
      "questionText": "Scenario: SVR applied to standardized financial dataset. Observation: model captures trends well. Reason?",
      "options": [
        "Scaling ensures kernel distances computed correctly",
        "Linear kernel preferred",
        "Epsilon ignored",
        "C irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardized features prevent distance distortions in kernel computations."
    },
    {
      "id": 72,
      "questionText": "Scenario: SVR applied to dataset with high-dimensional features and few samples. Observation: RBF kernel overfits. Solution?",
      "options": [
        "Increase epsilon",
        "Ignore feature scaling",
        "Decrease C",
        "Reduce gamma or use linear kernel"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High-dimensional kernels can overfit small datasets; reducing complexity helps."
    },
    {
      "id": 73,
      "questionText": "Scenario: SVR applied to housing dataset with polynomial kernel degree 3. Observation: small epsilon improves robustness. Reason?",
      "options": [
        "Epsilon balances sensitivity to minor deviations",
        "Overfits all points",
        "C irrelevant",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Appropriate epsilon allows ignoring small noise while fitting main trends."
    },
    {
      "id": 74,
      "questionText": "Scenario: SVR applied with grid search for C, gamma, epsilon. Observation: selected parameters give best validation performance. Benefit?",
      "options": [
        "Optimal hyperparameters improve generalization",
        "Always minimize training error",
        "Intercept removed",
        "Kernel linear"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Grid search helps select parameters that balance bias and variance for unseen data."
    },
    {
      "id": 75,
      "questionText": "Scenario: SVR applied to financial dataset with RBF kernel. Observation: small epsilon, high C, high gamma. Effect?",
      "options": [
        "Overfits training data, poor generalization",
        "Underfits",
        "Residuals ignored",
        "Intercept irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small epsilon, high C, and high gamma make the model fit almost all points, including noise, causing overfitting."
    },
    {
      "id": 76,
      "questionText": "Scenario: SVR applied to high-frequency trading data. Observation: RBF kernel, gamma extremely high. Effect?",
      "options": [
        "Overfits to noise, poor generalization",
        "Underfits trends",
        "Training error zero",
        "Epsilon ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Very high gamma makes the kernel very narrow, fitting noise and causing overfitting."
    },
    {
      "id": 77,
      "questionText": "Scenario: SVR applied to housing dataset with polynomial kernel degree=7. Observation: model unstable. Solution?",
      "options": [
        "Reduce polynomial degree or tune C and epsilon",
        "Increase gamma",
        "Remove kernel",
        "Increase epsilon only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-degree polynomials overfit and produce instability; reducing degree or tuning hyperparameters stabilizes predictions."
    },
    {
      "id": 78,
      "questionText": "Scenario: SVR applied to dataset with missing features. Observation: model fails. Solution?",
      "options": [
        "Impute or remove missing values",
        "Decrease epsilon",
        "Change kernel",
        "Decrease C"
      ],
      "correctAnswerIndex": 0,
      "explanation": "SVR cannot handle missing values; preprocessing is required."
    },
    {
      "id": 79,
      "questionText": "Scenario: SVR applied to noisy stock market data. Observation: small epsilon, high C. Effect?",
      "options": [
        "Overfits noise, poor generalization",
        "Underfits trends",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small epsilon and high C force the model to fit almost all points, including noise."
    },
    {
      "id": 80,
      "questionText": "Scenario: SVR applied with RBF kernel, gamma too small, epsilon too large. Observation?",
      "options": [
        "Underfits, predictions too smooth",
        "Overfits",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small gamma and large epsilon make the model insensitive, producing overly smooth predictions."
    },
    {
      "id": 81,
      "questionText": "Scenario: SVR applied to real estate dataset. Observation: grid search used for C, gamma, epsilon. Benefit?",
      "options": [
        "Optimal hyperparameters balance bias and variance",
        "Always minimize training error",
        "Remove intercept",
        "Kernel linear"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Grid search finds the best combination of hyperparameters to generalize well on unseen data."
    },
    {
      "id": 82,
      "questionText": "Scenario: SVR applied to dataset with standardized features. Observation: model improves. Reason?",
      "options": [
        "Kernel distances computed correctly after scaling",
        "Linear kernel preferred",
        "Epsilon ignored",
        "C irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardization prevents skewing of kernel distance calculations."
    },
    {
      "id": 83,
      "questionText": "Scenario: SVR applied to time-series dataset. Observation: model lags sudden spikes. Likely cause?",
      "options": [
        "Epsilon too large or gamma too small",
        "C too high",
        "Kernel linear",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Large epsilon and small gamma smooth predictions, causing lag behind rapid changes."
    },
    {
      "id": 84,
      "questionText": "Scenario: SVR applied to small dataset with high-dimensional features. Observation: RBF kernel overfits. Solution?",
      "options": [
        "Reduce gamma or use linear kernel",
        "Increase epsilon",
        "Decrease C",
        "Ignore feature scaling"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-dimensional kernels can overfit small datasets; reducing complexity helps."
    },
    {
      "id": 85,
      "questionText": "Scenario: SVR applied with polynomial kernel degree=4. Observation: training error low, test error high. Reason?",
      "options": [
        "Overfitting due to high-degree polynomial",
        "Underfitting",
        "Epsilon too large",
        "C too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-degree polynomials fit training data too closely, causing poor generalization."
    },
    {
      "id": 86,
      "questionText": "Scenario: SVR applied to financial dataset with RBF kernel. Observation: small epsilon, high C, moderate gamma. Effect?",
      "options": [
        "Model fits closely to significant deviations, balances noise",
        "Underfits",
        "Overfits all points",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small epsilon and high C make SVR sensitive to important deviations while ignoring minor noise."
    },
    {
      "id": 87,
      "questionText": "Scenario: SVR applied with RBF kernel. Observation: gamma increases, epsilon constant. Effect?",
      "options": [
        "Model becomes more sensitive to small patterns, may overfit",
        "Underfits",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Increasing gamma narrows the kernel, increasing sensitivity to variations and risk of overfitting."
    },
    {
      "id": 88,
      "questionText": "Scenario: SVR applied to dataset with noise. Observation: increasing epsilon. Effect?",
      "options": [
        "Model ignores minor deviations, improves robustness",
        "Overfits all points",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Higher epsilon creates a wider tube, reducing sensitivity to noise."
    },
    {
      "id": 89,
      "questionText": "Scenario: SVR applied with polynomial kernel. Observation: higher-degree terms dominate predictions. Effect?",
      "options": [
        "May overfit, complex curve",
        "Underfits",
        "Training error zero",
        "Epsilon ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-degree polynomial terms can produce complex predictions and overfitting."
    },
    {
      "id": 90,
      "questionText": "Scenario: SVR applied to dataset with large number of outliers. Observation: large epsilon. Effect?",
      "options": [
        "Model ignores small deviations, robust to noise",
        "Overfits outliers",
        "Underfits completely",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Large epsilon reduces sensitivity to minor deviations, improving robustness against noise and outliers."
    },
    {
      "id": 91,
      "questionText": "Scenario: SVR applied to financial time-series dataset. Observation: gamma and C tuned via grid search. Advantage?",
      "options": [
        "Optimal hyperparameters improve generalization",
        "Always minimize training error",
        "Intercept removed",
        "Kernel linear"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Grid search balances bias and variance by selecting optimal hyperparameters."
    },
    {
      "id": 92,
      "questionText": "Scenario: SVR applied to dataset with standardized features. Observation: model improves. Reason?",
      "options": [
        "Kernel distances computed correctly after scaling",
        "Linear kernel preferred",
        "Epsilon ignored",
        "C irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Feature scaling ensures proper kernel distance calculations."
    },
    {
      "id": 93,
      "questionText": "Scenario: SVR applied to time-series dataset. Observation: epsilon too small, C high. Effect?",
      "options": [
        "Overfits minor fluctuations",
        "Underfits",
        "Residuals ignored",
        "Intercept irrelevant"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Small epsilon and high C force SVR to fit almost all points, including noise."
    },
    {
      "id": 94,
      "questionText": "Scenario: SVR applied to dataset with high-dimensional features. Observation: linear kernel better than RBF. Reason?",
      "options": [
        "RBF overfits due to limited samples",
        "Linear kernel always better",
        "Epsilon ignored",
        "C too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-dimensional RBF kernels can overfit when sample size is small; linear kernel is safer."
    },
    {
      "id": 95,
      "questionText": "Scenario: SVR applied with RBF kernel, large epsilon, small C. Observation?",
      "options": [
        "Underfits, wide margin, ignores minor deviations",
        "Overfits",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Large epsilon and small C reduce sensitivity to errors, leading to underfitting."
    },
    {
      "id": 96,
      "questionText": "Scenario: SVR applied to small dataset with polynomial kernel degree 5. Observation: overfitting. Solution?",
      "options": [
        "Reduce degree or tune C and epsilon",
        "Increase gamma",
        "Ignore epsilon",
        "Remove kernel"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High-degree polynomial can overfit; tuning reduces complexity and improves generalization."
    },
    {
      "id": 97,
      "questionText": "Scenario: SVR applied to financial data. Observation: epsilon-insensitive tube reduces minor prediction errors. Benefit?",
      "options": [
        "Robustness to noise, better generalization",
        "Overfits all points",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Epsilon-insensitive loss ignores minor deviations, enhancing robustness."
    },
    {
      "id": 98,
      "questionText": "Scenario: SVR applied with RBF kernel. Observation: gamma too high, epsilon small. Effect?",
      "options": [
        "Overfits noise, poor generalization",
        "Underfits",
        "Training error zero",
        "Intercept ignored"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High gamma and small epsilon make SVR fit closely to every data point, including noise."
    },
    {
      "id": 99,
      "questionText": "Scenario: SVR applied to housing dataset with high feature correlation. Observation: performance similar for linear and RBF kernels. Reason?",
      "options": [
        "Dominant linear relationships reduce kernel differences",
        "Linear kernel always better",
        "Epsilon ignored",
        "C too small"
      ],
      "correctAnswerIndex": 0,
      "explanation": "If relationships are mostly linear, both linear and RBF kernels perform similarly."
    },
    {
      "id": 100,
      "questionText": "Scenario: SVR applied to stock price dataset. Observation: gamma, C, epsilon tuned optimally via grid search. Result?",
      "options": [
        "Accurate predictions, optimal bias-variance tradeoff",
        "Underfits all trends",
        "Overfits all points",
        "Training error zero"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Optimal hyperparameter tuning via grid search ensures good generalization and accurate predictions."
    }
  ]
}