Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| from huggingface_hub import login | |
| from transformers import load_tool | |
| from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration | |
| import torch | |
| from PIL import Image | |
| import spaces | |
| #login(os.getenv("HUGGINGFACEHUB_API_TOKEN")) | |
| processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") | |
| model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
| model.to("cuda") | |
| def DocChat(question, history): | |
| print(question) | |
| if question["files"]: | |
| image = question["files"][-1]["path"] | |
| else: | |
| # if there's no image uploaded for this turn, look for images in the past turns | |
| # kept inside tuples, take the last one | |
| for hist in history: | |
| if type(hist[0])==tuple: | |
| image = hist[0][0] | |
| if image is None: | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| prompt=f"[INST] <image>\n{question['text']} [/INST]" | |
| image = Image.open(image).convert("RGB") | |
| inputs = processor(prompt, image, return_tensors="pt").to("cuda") | |
| output = model.generate(**inputs, max_new_tokens=500) | |
| outputmsg = processor.decode(output[0], skip_special_tokens=True) | |
| generated_text_without_prompt = outputmsg[len(prompt)-5:] | |
| yield generated_text_without_prompt | |
| demo = gr.ChatInterface(fn=DocChat, title="Image Chatbot", description="Chat with your images/documents with LLaVA NeXT.", | |
| stop_btn="Stop Generation", multimodal=True) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) | |