Spaces:
Sleeping
Sleeping
| from streamlit_simulation.utils.env import use_dummy | |
| from transformer_model.scripts.config_transformer import FORECAST_HORIZON | |
| from transformer_model.scripts.utils.informer_dataset_class import \ | |
| InformerDataset | |
| from transformer_model.scripts.utils.load_final_model import \ | |
| load_real_transformer_model | |
| try: | |
| from streamlit_simulation.utils.dummy import (DummyDataset, | |
| DummyTransformerModel) | |
| except ImportError: | |
| DummyTransformerModel = None | |
| DummyDataset = None | |
| def load_final_transformer_model(): | |
| if use_dummy(): | |
| if DummyTransformerModel is None: | |
| raise ImportError("DummyTransformerModel not available") | |
| return DummyTransformerModel(), "cpu" | |
| else: | |
| return load_real_transformer_model() | |
| def load_model_and_dataset(): | |
| model, device = load_final_transformer_model() | |
| if use_dummy(): | |
| if DummyDataset is None: | |
| raise ImportError("DummyDataset not available") | |
| dataset = DummyDataset(length=200) | |
| else: | |
| train_dataset = InformerDataset( | |
| data_split="train", random_seed=13, forecast_horizon=FORECAST_HORIZON | |
| ) | |
| test_dataset = InformerDataset( | |
| data_split="test", random_seed=13, forecast_horizon=FORECAST_HORIZON | |
| ) | |
| test_dataset.scaler = train_dataset.scaler | |
| dataset = test_dataset | |
| return model, dataset, device | |