Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,24 +6,23 @@ from PIL import Image
|
|
| 6 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DDIMScheduler
|
| 7 |
from controlnet_aux import CannyDetector
|
| 8 |
from diffusers.utils import load_image
|
| 9 |
-
from moviepy.editor import VideoFileClip
|
| 10 |
import os
|
| 11 |
import shutil
|
| 12 |
import tempfile
|
| 13 |
import datetime
|
|
|
|
| 14 |
|
| 15 |
# 1. تهيئة النموذج
|
| 16 |
-
#
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 19 |
|
| 20 |
try:
|
| 21 |
print(f"Loading models on: {device}...")
|
| 22 |
-
# تحميل ControlNet (نموذج Canny)
|
| 23 |
controlnet_model = ControlNetModel.from_pretrained(
|
| 24 |
"lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype
|
| 25 |
)
|
| 26 |
-
# تحميل الـ Pipeline الرئيسية
|
| 27 |
model_id = "runwayml/stable-diffusion-v1-5"
|
| 28 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 29 |
model_id, controlnet=controlnet_model, torch_dtype=torch_dtype
|
|
@@ -33,100 +32,106 @@ try:
|
|
| 33 |
print("Models loaded successfully.")
|
| 34 |
except Exception as e:
|
| 35 |
print(f"Error loading models on CUDA: {e}. Switching to CPU.")
|
| 36 |
-
# محاولة التحميل على CPU إذا فشل CUDA
|
| 37 |
controlnet_model = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
| 38 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model)
|
| 39 |
pipe.to("cpu")
|
| 40 |
|
| 41 |
-
# تهيئة مُعالِج Canny
|
| 42 |
canny_processor = CannyDetector()
|
| 43 |
|
| 44 |
-
|
| 45 |
# 2. دالة معالجة الفيديو والنموذج
|
| 46 |
def colorize_video_multistyle(video_file, reference_image_path, prompt, style_choice, steps=25):
|
| 47 |
|
| 48 |
-
# 0. إنشاء اسم ملف فريد للناتج
|
| 49 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
| 50 |
final_output_name = f"colored_output_{timestamp}.mp4"
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
pil_image = Image.fromarray(frame).convert("RGB")
|
| 86 |
-
|
| 87 |
-
# استخراج خريطة Canny للحفاظ على الهيكل
|
| 88 |
-
canny_image = canny_processor(pil_image)
|
| 89 |
-
|
| 90 |
-
# تمرير خريطة Canny للنموذج
|
| 91 |
-
image_out = pipe(
|
| 92 |
-
prompt=final_prompt,
|
| 93 |
-
negative_prompt=negative_prompt,
|
| 94 |
-
image=canny_image, # ControlNet Canny Input
|
| 95 |
-
num_inference_steps=steps,
|
| 96 |
-
guidance_scale=7.5
|
| 97 |
-
).images[0]
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# 4. تجميع الإطارات في فيديو مؤقت (AVI)
|
| 102 |
-
# نستخدم ترميز MJPG و AVI كملف مؤقت لموثوقية OpenCV
|
| 103 |
-
output_video_path = os.path.join(temp_dir, "colored_temp_video.avi")
|
| 104 |
-
height, width, layers = colored_frames[0].shape
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
# 3. واجهة Gradio النهائية
|
| 130 |
iface = gr.Interface(
|
| 131 |
fn=colorize_video_multistyle,
|
| 132 |
inputs=[
|
|
|
|
| 6 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DDIMScheduler
|
| 7 |
from controlnet_aux import CannyDetector
|
| 8 |
from diffusers.utils import load_image
|
| 9 |
+
# تم إزالة: from moviepy.editor import VideoFileClip
|
| 10 |
import os
|
| 11 |
import shutil
|
| 12 |
import tempfile
|
| 13 |
import datetime
|
| 14 |
+
import ffmpeg # المكتبة الجديدة
|
| 15 |
|
| 16 |
# 1. تهيئة النموذج
|
| 17 |
+
# ... (كود التهيئة يبقى كما هو)
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 20 |
|
| 21 |
try:
|
| 22 |
print(f"Loading models on: {device}...")
|
|
|
|
| 23 |
controlnet_model = ControlNetModel.from_pretrained(
|
| 24 |
"lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype
|
| 25 |
)
|
|
|
|
| 26 |
model_id = "runwayml/stable-diffusion-v1-5"
|
| 27 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 28 |
model_id, controlnet=controlnet_model, torch_dtype=torch_dtype
|
|
|
|
| 32 |
print("Models loaded successfully.")
|
| 33 |
except Exception as e:
|
| 34 |
print(f"Error loading models on CUDA: {e}. Switching to CPU.")
|
|
|
|
| 35 |
controlnet_model = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
| 36 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model)
|
| 37 |
pipe.to("cpu")
|
| 38 |
|
|
|
|
| 39 |
canny_processor = CannyDetector()
|
| 40 |
|
|
|
|
| 41 |
# 2. دالة معالجة الفيديو والنموذج
|
| 42 |
def colorize_video_multistyle(video_file, reference_image_path, prompt, style_choice, steps=25):
|
| 43 |
|
|
|
|
| 44 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 45 |
+
output_temp_video_no_audio = os.path.join(tempfile.gettempdir(), f"temp_colored_{timestamp}_no_audio.mp4")
|
| 46 |
final_output_name = f"colored_output_{timestamp}.mp4"
|
| 47 |
|
| 48 |
+
# === 1. استخراج الإطارات و الصوت (باستخدام FFMPEG مباشرةً عبر OpenCV) ===
|
| 49 |
+
# نستخدم FFMPEG-Python لاستخراج مسار ملف الصوت المؤقت
|
| 50 |
+
|
| 51 |
+
# 1.1 استخراج الصوت
|
| 52 |
+
audio_path = os.path.join(tempfile.gettempdir(), f"temp_audio_{timestamp}.aac")
|
| 53 |
+
try:
|
| 54 |
+
(
|
| 55 |
+
ffmpeg
|
| 56 |
+
.input(video_file)
|
| 57 |
+
.output(audio_path, acodec='copy')
|
| 58 |
+
.run(overwrite_output=True, quiet=True)
|
| 59 |
+
)
|
| 60 |
+
audio_exists = True
|
| 61 |
+
except ffmpeg.Error:
|
| 62 |
+
audio_exists = False
|
| 63 |
+
print("No audio found or extraction failed. Proceeding without audio.")
|
| 64 |
|
| 65 |
+
# 1.2 قراءة الفيديو للإطارات
|
| 66 |
+
cap = cv2.VideoCapture(video_file)
|
| 67 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 68 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 69 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 70 |
+
|
| 71 |
+
# 2. تجهيز المدخلات للنموذج (كود الأنماط يبقى كما هو)
|
| 72 |
+
style_prompts = {
|
| 73 |
+
"Auto Color": "photorealistic color photo, cinematic, detailed, masterpiece",
|
| 74 |
+
"Vivid": "highly saturated, vibrant color photo, pop art colors",
|
| 75 |
+
"Vintage": "sepia tone, old film grain, 1940s vintage look",
|
| 76 |
+
}
|
| 77 |
+
final_prompt = f"{prompt}, {style_prompts.get(style_choice, '')}"
|
| 78 |
+
negative_prompt = "lowres, bad anatomy, bad hands, blurry, distorted, nsfw, frame, border, changed details, monochrome"
|
| 79 |
+
|
| 80 |
+
colored_frames = []
|
| 81 |
+
|
| 82 |
+
# 3. معالجة الإطارات (التلوين)
|
| 83 |
+
while cap.isOpened():
|
| 84 |
+
ret, frame = cap.read()
|
| 85 |
+
if not ret:
|
| 86 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 89 |
+
canny_image = canny_processor(pil_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
image_out = pipe(
|
| 92 |
+
prompt=final_prompt,
|
| 93 |
+
negative_prompt=negative_prompt,
|
| 94 |
+
image=canny_image,
|
| 95 |
+
num_inference_steps=steps,
|
| 96 |
+
guidance_scale=7.5
|
| 97 |
+
).images[0]
|
| 98 |
|
| 99 |
+
colored_frames.append(np.array(image_out))
|
| 100 |
+
|
| 101 |
+
cap.release()
|
| 102 |
+
|
| 103 |
+
# 4. تجميع الإطارات في فيديو مؤقت (MP4) باستخدام OpenCV
|
| 104 |
+
# نستخدم MP4V-2 لتجنب الاعتماد على الترميز الخارجي
|
| 105 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 106 |
+
out = cv2.VideoWriter(output_temp_video_no_audio, fourcc, fps, (width, height))
|
| 107 |
+
|
| 108 |
+
for frame in colored_frames:
|
| 109 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
| 110 |
|
| 111 |
+
out.release()
|
| 112 |
+
|
| 113 |
+
# 5. دمج الفيديو الملون مع الصوت الأصلي باستخدام FFMPEG-Python
|
| 114 |
+
if audio_exists:
|
| 115 |
+
try:
|
| 116 |
+
(
|
| 117 |
+
ffmpeg
|
| 118 |
+
.input(output_temp_video_no_audio)
|
| 119 |
+
.output(ffmpeg.input(audio_path).audio, final_output_name, vcodec='copy', acodec='copy')
|
| 120 |
+
.run(overwrite_output=True, quiet=True)
|
| 121 |
+
)
|
| 122 |
+
except ffmpeg.Error as e:
|
| 123 |
+
print(f"FFMPEG merge failed: {e.stderr.decode('utf8')}")
|
| 124 |
+
shutil.copy(output_temp_video_no_audio, final_output_name) # العودة إلى الفيديو بدون صوت
|
| 125 |
+
else:
|
| 126 |
+
shutil.copy(output_temp_video_no_audio, final_output_name)
|
| 127 |
|
| 128 |
+
# 6. تنظيف الملفات المؤقتة
|
| 129 |
+
if os.path.exists(audio_path):
|
| 130 |
+
os.remove(audio_path)
|
| 131 |
+
|
| 132 |
+
return final_output_name
|
| 133 |
|
| 134 |
+
# 3. واجهة Gradio النهائية (بدون تغيير)
|
| 135 |
iface = gr.Interface(
|
| 136 |
fn=colorize_video_multistyle,
|
| 137 |
inputs=[
|