File size: 15,668 Bytes
97608ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10eab12
88079b8
042a8b6
88079b8
 
 
 
 
 
 
 
 
 
 
 
 
 
10eab12
97608ef
 
88079b8
 
97608ef
10eab12
88079b8
 
10eab12
88079b8
97608ef
 
 
 
 
10eab12
 
 
 
 
 
 
 
 
 
 
 
97608ef
10eab12
 
 
 
 
 
 
97608ef
 
 
 
 
10eab12
 
97608ef
10eab12
 
 
 
 
 
 
 
 
 
97608ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10eab12
97608ef
042a8b6
97608ef
 
 
 
 
 
 
 
 
 
042a8b6
10eab12
 
 
 
042a8b6
 
10eab12
042a8b6
 
 
 
 
 
 
 
10eab12
 
 
97608ef
10eab12
97608ef
10eab12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
042a8b6
10eab12
042a8b6
 
10eab12
 
 
 
 
 
 
97608ef
393fc4f
 
 
dccbdc3
042a8b6
dccbdc3
 
 
 
 
 
 
 
 
 
 
 
e256a15
ad595d0
24bb430
ad595d0
 
 
 
 
 
24bb430
ad595d0
 
24bb430
 
 
ad595d0
 
24bb430
 
 
ad595d0
 
 
 
 
 
 
 
 
 
 
 
 
24bb430
 
e256a15
 
393fc4f
 
 
ad6722d
393fc4f
042a8b6
 
393fc4f
24bb430
393fc4f
 
 
 
 
24bb430
393fc4f
 
 
 
 
 
 
24bb430
393fc4f
 
 
 
 
 
 
 
 
 
 
24bb430
393fc4f
 
97608ef
aa6d576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc155d4
10eab12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti

# =========================================================
# MODEL CONFIGURATION
# =========================================================
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
HF_TOKEN = os.environ.get("HF_TOKEN")

MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 7720
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)

# =========================================================
# LOAD PIPELINE
# =========================================================
print("Loading pipeline components...")

# Load models in bfloat16
transformer = WanTransformer3DModel.from_pretrained(
    MODEL_ID,
    subfolder="transformer",
    torch_dtype=torch.bfloat16,
    token=HF_TOKEN
)

transformer_2 = WanTransformer3DModel.from_pretrained(
    MODEL_ID,
    subfolder="transformer_2",
    torch_dtype=torch.bfloat16,
    token=HF_TOKEN
)

print("Assembling pipeline...")
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID,
    transformer=transformer,
    transformer_2=transformer_2,
    torch_dtype=torch.bfloat16,
    token=HF_TOKEN
)

print("Moving to CUDA...")
pipe = pipe.to("cuda")

# =========================================================
# LOAD LORA ADAPTERS
# =========================================================
print("Loading LoRA adapters...")
try:
    pipe.load_lora_weights(
        "Kijai/WanVideo_comfy",
        weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
        adapter_name="lightx2v"
    )
    pipe.load_lora_weights(
        "Kijai/WanVideo_comfy",
        weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
        adapter_name="lightx2v_2",
        load_into_transformer_2=True
    )

    pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
    pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
    pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
    pipe.unload_lora_weights()
    print("LoRA loaded and fused successfully.")
except Exception as e:
    print(f"Warning: Failed to load LoRA. Continuing without it. Error: {e}")

# =========================================================
# QUANTIZATION & AOT OPTIMIZATION
# =========================================================
print("Applying quantization...")
torch.cuda.empty_cache()
gc.collect()

try:
    quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
    quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
    quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())

    print("Loading AOTI blocks...")
    aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
    aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
except Exception as e:
    print(f"Warning: Quantization/AOTI failed. Running in standard mode might OOM. Error: {e}")

# =========================================================
# DEFAULT PROMPTS
# =========================================================
default_prompt_i2v = "Make this image come alive with dynamic, cinematic human motion. Create smooth, natural, lifelike animation with fluid transitions, expressive body movement, realistic physics, and elegant camera flow. Deliver a polished, high-quality motion style that feels immersive, artistic, and visually captivating."

default_negative_prompt = (
    "low quality, worst quality, motion artifacts, unstable motion, jitter, frame jitter, wobbling limbs, motion distortion, inconsistent movement, robotic movement, animation-like motion, awkward transitions, incorrect body mechanics, unnatural posing, off-balance poses, broken motion paths, frozen frames, duplicated frames, frame skipping, warped motion, stretching artifacts bad anatomy, incorrect proportions, deformed body, twisted torso, broken joints, dislocated limbs, distorted neck, unnatural spine curvature, malformed hands, extra fingers, missing fingers, fused fingers, distorted legs, extra limbs, collapsed feet, floating feet, foot sliding, foot jitter, backward walking, unnatural gait blurry details, long exposure blur, ghosting, shadow trails, smearing, washed-out colors, overexposure, underexposure, excessive contrast, blown highlights, poorly rendered clothing, fabric glitches, texture warping, clothing merging with body, incorrect cloth physics ugly background, cluttered scene, crowded background, random objects, unwanted text, subtitles, logos, graffiti, grain, noise, static artifacts, compression noise, jpeg artifacts, image-like stillness, painting-like look, cartoon texture, low-resolution textures"
)

# =========================================================
# IMAGE RESIZING LOGIC
# =========================================================
def resize_image(image: Image.Image) -> Image.Image:
    width, height = image.size
    if width == height:
        return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
    
    aspect_ratio = width / height
    MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
    MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM

    image_to_resize = image
    if aspect_ratio > MAX_ASPECT_RATIO:
        crop_width = int(round(height * MAX_ASPECT_RATIO))
        left = (width - crop_width) // 2
        image_to_resize = image.crop((left, 0, left + crop_width, height))
    elif aspect_ratio < MIN_ASPECT_RATIO:
        crop_height = int(round(width / MIN_ASPECT_RATIO))
        top = (height - crop_height) // 2
        image_to_resize = image.crop((0, top, width, top + crop_height))
    
    if width > height:
        target_w = MAX_DIM
        target_h = int(round(target_w / aspect_ratio))
    else:
        target_h = MAX_DIM
        target_w = int(round(target_h * aspect_ratio))
        
    final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
    final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
    
    final_w = max(MIN_DIM, min(MAX_DIM, final_w))
    final_h = max(MIN_DIM, min(MAX_DIM, final_h))
    
    return image_to_resize.resize((final_w, final_h), Image.LANCZOS)

# =========================================================
# UTILITY FUNCTIONS
# =========================================================
def get_num_frames(duration_seconds: float):
    return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))

# =========================================================
# MAIN GENERATION FUNCTION
# =========================================================
@spaces.GPU(duration=180)
def generate_video(
    input_image_path,  # Receives file path now, not PIL object
    prompt,
    steps=4,
    negative_prompt=default_negative_prompt,
    duration_seconds=MAX_DURATION,
    guidance_scale=1,
    guidance_scale_2=1,
    seed=42,
    randomize_seed=False,
    progress=gr.Progress(track_tqdm=True),
):
    # Cleanup memory
    gc.collect()
    torch.cuda.empty_cache()
    
    try:
        # 1. Validation checks
        if not input_image_path:
            raise gr.Error("Please upload an input image.")
        
        if not os.path.exists(input_image_path):
             raise gr.Error("Image file not found! Please re-upload the image.")

        # 2. Manual Image Opening
        # We open it inside the function to avoid connection timeouts
        input_image = Image.open(input_image_path).convert("RGB")

        num_frames = get_num_frames(duration_seconds)
        current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
        resized_image = resize_image(input_image)

        print(f"Generating video with seed: {current_seed}, frames: {num_frames}")

        output_frames_list = pipe(
            image=resized_image,
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=resized_image.height,
            width=resized_image.width,
            num_frames=num_frames,
            guidance_scale=float(guidance_scale),
            guidance_scale_2=float(guidance_scale_2),
            num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed),
        ).frames[0]

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
            video_path = tmpfile.name
        
        export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
        
        # Cleanup
        del output_frames_list
        del input_image
        del resized_image
        torch.cuda.empty_cache()
        
        return video_path, current_seed

    except Exception as e:
        print(f"Error during generation: {e}")
        raise gr.Error(f"Generation failed: {str(e)}")

# =========================================================
# GRADIO UI
# =========================================================

# Google Analytics Script
ga_script = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1TD40BVM04"></script>
<script>
  window.dataLayer = window.dataLayer || [];
  function gtag(){dataLayer.push(arguments);}
  gtag('js', new Date());

  gtag('config', 'G-1TD40BVM04');
</script>
"""

with gr.Blocks(theme=gr.themes.Soft(), head=ga_script) as demo:
    
    # --- PROFESSIONAL YOUTUBE EMBED SECTION ---
    gr.HTML("""
    <div style="background: linear-gradient(135deg, #b90000 0%, #ff0000 100%); color: white; padding: 25px; border-radius: 16px; text-align: center; margin-bottom: 25px; box-shadow: 0 10px 30px rgba(185, 0, 0, 0.3);">
        <div style="display: flex; align-items: center; justify-content: center; gap: 25px; flex-wrap: wrap; margin-bottom: 20px;">
            <div style="display: flex; align-items: center; gap: 15px;">
                <div style="background: white; width: 50px; height: 50px; border-radius: 50%; display: flex; align-items: center; justify-content: center; box-shadow: 0 4px 8px rgba(0,0,0,0.2);">
                    <span style="font-size: 24px;">▶️</span>
                </div>
                <div style="text-align: left;">
                    <h3 style="margin: 0; font-weight: 800; font-size: 22px; letter-spacing: 0.5px;">Imagination Engineering</h3>
                    <p style="margin: 4px 0 0 0; opacity: 0.95; font-size: 14px; font-weight: 400;">Mastering AI & Creative Tech</p>
                </div>
            </div>
            <a href="https://www.youtube.com/@ImaginationEngineering" target="_blank" style="text-decoration: none;">
                <button style="background-color: white; color: #cc0000; border: none; padding: 10px 28px; border-radius: 30px; font-weight: 700; cursor: pointer; transition: transform 0.2s, box-shadow 0.2s; font-size: 15px; box-shadow: 0 4px 12px rgba(0,0,0,0.2);">
                    SUBSCRIBE & WATCH 📺
                </button>
            </a>
        </div>
        
        <div style="width: 100%; max-width: 650px; margin: 0 auto; border-radius: 12px; overflow: hidden; box-shadow: 0 15px 40px rgba(0,0,0,0.4); border: 4px solid rgba(255,255,255,0.15);">
            <div style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden;">
                <iframe 
                    src="https://www.youtube.com/embed/w_7wL_i3f1k?rel=0&modestbranding=1" 
                    style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;" 
                    frameborder="0" 
                    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" 
                    allowfullscreen 
                    title="Imagination Engineering Feature">
                </iframe>
            </div>
        </div>
    </div>
    """)
    # ---------------------------------------------

    gr.Markdown("# 🚀 Dream Wan 2.2 Faster Pro (14B) — Ultra Fast I2V with Lightning LoRA")
    gr.Markdown("Optimized FP8 quantized pipeline with AoT blocks & 4-step fast inference ⚡")

    with gr.Row():
        with gr.Column():
            # CHANGE: type="filepath" fixes the file not found error
            input_image_component = gr.Image(type="filepath", label="Input Image")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            
            duration_seconds_input = gr.Slider(
                minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5,
                label="Duration (seconds)",
                info=f"Model range: {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale (high noise)")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 (low noise)")
            
            generate_button = gr.Button("🎬 Generate Video", variant="primary")

        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True)

    ui_inputs = [
        input_image_component, prompt_input, steps_slider,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input,
        seed_input, randomize_seed_checkbox
    ]

    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    # --- BOTTOM ADVERTISEMENT BANNER ---
    gr.HTML("""
    <div style="background: linear-gradient(90deg, #4f46e5, #9333ea); color: white; padding: 15px; border-radius: 10px; text-align: center; margin-top: 20px; box-shadow: 0 4px 15px rgba(0,0,0,0.1);">
        <div style="display: flex; align-items: center; justify-content: center; gap: 20px; flex-wrap: wrap;">
            <div style="text-align: left;">
                <h3 style="margin: 0; font-weight: bold; font-size: 18px;">✨ New: Dream Hub Pro (All-in-One)</h3>
                <p style="margin: 5px 0 0 0; opacity: 0.9; font-size: 14px;">Access all your pro tools (Wan2.1, Qwen, Audio, Video Enhance) in one place!</p>
            </div>
            <a href="https://huggingface.co/spaces/dream2589632147/Dream-Hub-Pro" target="_blank" style="text-decoration: none;">
                <button style="background-color: white; color: #4f46e5; border: none; padding: 10px 25px; border-radius: 25px; font-weight: bold; cursor: pointer; transition: all 0.2s; font-size: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.2);">
                    🚀 Open Hub Pro Now
                </button>
            </a>
        </div>
    </div>
    """)

if __name__ == "__main__":
    demo.queue().launch()