Spaces:
Running
Running
Update Gradio app with multiple files
Browse files- app.py +99 -32
- components.py +4 -6
- filters.py +1 -644
- registry.py +25 -33
app.py
CHANGED
|
@@ -8,7 +8,7 @@ from components import create_filter_controls
|
|
| 8 |
def create_app():
|
| 9 |
with gr.Blocks(theme=gr.themes.Soft(), css="""
|
| 10 |
.gradio-container {
|
| 11 |
-
max-width:
|
| 12 |
margin: auto !important;
|
| 13 |
}
|
| 14 |
.filter-header {
|
|
@@ -17,40 +17,43 @@ def create_app():
|
|
| 17 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 18 |
border-radius: 15px;
|
| 19 |
margin-bottom: 30px;
|
| 20 |
-
box-shadow: 0 10px 30px rgba(0,0,0,0.
|
| 21 |
}
|
| 22 |
.filter-header h1 {
|
| 23 |
-
color: white;
|
| 24 |
margin: 0;
|
| 25 |
font-size: 2.5em;
|
| 26 |
font-weight: bold;
|
| 27 |
}
|
| 28 |
.filter-header p {
|
| 29 |
-
color: rgba(255,255,255,0.95);
|
| 30 |
margin: 10px 0 0 0;
|
| 31 |
font-size: 1.1em;
|
| 32 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
.image-container {
|
| 34 |
-
border: 2px solid #e0e0e0;
|
| 35 |
border-radius: 12px;
|
| 36 |
padding: 15px;
|
| 37 |
-
background: white;
|
| 38 |
-
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
|
| 39 |
transition: all 0.3s ease;
|
| 40 |
}
|
| 41 |
.image-container:hover {
|
| 42 |
-
|
| 43 |
}
|
| 44 |
.control-panel {
|
| 45 |
-
background: linear-gradient(to bottom, #f8f9fa, #ffffff);
|
| 46 |
border-radius: 12px;
|
| 47 |
padding: 20px;
|
| 48 |
margin-top: 15px;
|
| 49 |
-
border: 1px solid #e9ecef;
|
| 50 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.04);
|
| 51 |
}
|
| 52 |
.filter-description {
|
| 53 |
-
background: #f0f4f8;
|
| 54 |
padding: 15px;
|
| 55 |
border-radius: 8px;
|
| 56 |
margin: 15px 0;
|
|
@@ -60,38 +63,89 @@ def create_app():
|
|
| 60 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 61 |
border: none !important;
|
| 62 |
font-weight: bold !important;
|
|
|
|
|
|
|
| 63 |
}
|
| 64 |
.gr-button-primary:hover {
|
| 65 |
-
transform: translateY(-2px);
|
| 66 |
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4) !important;
|
| 67 |
}
|
| 68 |
.gr-button-secondary {
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
}
|
| 73 |
""") as app:
|
|
|
|
|
|
|
| 74 |
with gr.Column(elem_classes="filter-header"):
|
| 75 |
gr.Markdown("""
|
| 76 |
# 📷 Photo Filter App
|
| 77 |
Chỉnh sửa ảnh với các bộ lọc chuyên nghiệp - Nhanh chóng & Dễ dàng
|
|
|
|
|
|
|
| 78 |
""")
|
| 79 |
|
| 80 |
# Khởi tạo components
|
| 81 |
filter_names = list(registry.filters.keys())
|
| 82 |
|
| 83 |
with gr.Row():
|
| 84 |
-
|
|
|
|
| 85 |
with gr.Group(elem_classes="image-container"):
|
| 86 |
input_image = gr.Image(
|
| 87 |
-
label="📤
|
| 88 |
type="numpy",
|
| 89 |
-
height=
|
| 90 |
)
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
with gr.Group(elem_classes="control-panel"):
|
|
|
|
| 93 |
filter_select = gr.Dropdown(
|
| 94 |
-
label="
|
| 95 |
choices=filter_names,
|
| 96 |
value="Original",
|
| 97 |
interactive=True
|
|
@@ -102,26 +156,39 @@ def create_app():
|
|
| 102 |
elem_classes="filter-description"
|
| 103 |
)
|
| 104 |
|
|
|
|
| 105 |
# Tạo các điều khiển bộ lọc động
|
| 106 |
filter_controls = create_filter_controls()
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
variant="primary",
|
| 111 |
-
size="lg"
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
with gr.Column(scale=1):
|
| 115 |
with gr.Group(elem_classes="image-container"):
|
| 116 |
output_image = gr.Image(
|
| 117 |
label="✅ Ảnh đã chỉnh sửa",
|
| 118 |
-
height=
|
| 119 |
)
|
|
|
|
| 120 |
error_message = gr.Markdown(visible=False)
|
| 121 |
|
| 122 |
with gr.Row():
|
| 123 |
-
download_button = gr.Button(
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
# Xử lý cập nhật UI
|
| 127 |
def update_controls(filter_name):
|
|
@@ -195,4 +262,4 @@ def create_app():
|
|
| 195 |
|
| 196 |
if __name__ == "__main__":
|
| 197 |
app = create_app()
|
| 198 |
-
app.launch(
|
|
|
|
| 8 |
def create_app():
|
| 9 |
with gr.Blocks(theme=gr.themes.Soft(), css="""
|
| 10 |
.gradio-container {
|
| 11 |
+
max-width: 1600px !important;
|
| 12 |
margin: auto !important;
|
| 13 |
}
|
| 14 |
.filter-header {
|
|
|
|
| 17 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 18 |
border-radius: 15px;
|
| 19 |
margin-bottom: 30px;
|
| 20 |
+
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
|
| 21 |
}
|
| 22 |
.filter-header h1 {
|
| 23 |
+
color: white !important;
|
| 24 |
margin: 0;
|
| 25 |
font-size: 2.5em;
|
| 26 |
font-weight: bold;
|
| 27 |
}
|
| 28 |
.filter-header p {
|
| 29 |
+
color: rgba(255,255,255,0.95) !important;
|
| 30 |
margin: 10px 0 0 0;
|
| 31 |
font-size: 1.1em;
|
| 32 |
}
|
| 33 |
+
.filter-header a {
|
| 34 |
+
color: rgba(255,255,255,0.9) !important;
|
| 35 |
+
text-decoration: none;
|
| 36 |
+
font-weight: 500;
|
| 37 |
+
transition: all 0.3s ease;
|
| 38 |
+
}
|
| 39 |
+
.filter-header a:hover {
|
| 40 |
+
color: white !important;
|
| 41 |
+
text-decoration: underline;
|
| 42 |
+
}
|
| 43 |
.image-container {
|
|
|
|
| 44 |
border-radius: 12px;
|
| 45 |
padding: 15px;
|
|
|
|
|
|
|
| 46 |
transition: all 0.3s ease;
|
| 47 |
}
|
| 48 |
.image-container:hover {
|
| 49 |
+
transform: translateY(-2px);
|
| 50 |
}
|
| 51 |
.control-panel {
|
|
|
|
| 52 |
border-radius: 12px;
|
| 53 |
padding: 20px;
|
| 54 |
margin-top: 15px;
|
|
|
|
|
|
|
| 55 |
}
|
| 56 |
.filter-description {
|
|
|
|
| 57 |
padding: 15px;
|
| 58 |
border-radius: 8px;
|
| 59 |
margin: 15px 0;
|
|
|
|
| 63 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 64 |
border: none !important;
|
| 65 |
font-weight: bold !important;
|
| 66 |
+
color: white !important;
|
| 67 |
+
transition: all 0.3s ease !important;
|
| 68 |
}
|
| 69 |
.gr-button-primary:hover {
|
| 70 |
+
transform: translateY(-2px) !important;
|
| 71 |
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4) !important;
|
| 72 |
}
|
| 73 |
.gr-button-secondary {
|
| 74 |
+
transition: all 0.3s ease !important;
|
| 75 |
+
}
|
| 76 |
+
.gr-button-secondary:hover {
|
| 77 |
+
transform: translateY(-2px) !important;
|
| 78 |
+
}
|
| 79 |
+
.stats-panel {
|
| 80 |
+
border-radius: 8px;
|
| 81 |
+
padding: 15px;
|
| 82 |
+
margin-top: 10px;
|
| 83 |
+
text-align: center;
|
| 84 |
+
}
|
| 85 |
+
/* Dark mode compatibility */
|
| 86 |
+
.dark .filter-description {
|
| 87 |
+
background: rgba(255,255,255,0.05);
|
| 88 |
+
}
|
| 89 |
+
.dark .image-container {
|
| 90 |
+
background: rgba(255,255,255,0.02);
|
| 91 |
+
}
|
| 92 |
+
.dark .control-panel {
|
| 93 |
+
background: rgba(255,255,255,0.03);
|
| 94 |
+
}
|
| 95 |
+
/* Light mode */
|
| 96 |
+
.filter-description {
|
| 97 |
+
background: #f0f4f8;
|
| 98 |
+
}
|
| 99 |
+
.image-container {
|
| 100 |
+
background: rgba(0,0,0,0.02);
|
| 101 |
+
}
|
| 102 |
+
.control-panel {
|
| 103 |
+
background: linear-gradient(to bottom, #f8f9fa, #ffffff);
|
| 104 |
}
|
| 105 |
""") as app:
|
| 106 |
+
|
| 107 |
+
# Header
|
| 108 |
with gr.Column(elem_classes="filter-header"):
|
| 109 |
gr.Markdown("""
|
| 110 |
# 📷 Photo Filter App
|
| 111 |
Chỉnh sửa ảnh với các bộ lọc chuyên nghiệp - Nhanh chóng & Dễ dàng
|
| 112 |
+
|
| 113 |
+
Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
|
| 114 |
""")
|
| 115 |
|
| 116 |
# Khởi tạo components
|
| 117 |
filter_names = list(registry.filters.keys())
|
| 118 |
|
| 119 |
with gr.Row():
|
| 120 |
+
# Left Column - Input & Controls
|
| 121 |
+
with gr.Column(scale=2):
|
| 122 |
with gr.Group(elem_classes="image-container"):
|
| 123 |
input_image = gr.Image(
|
| 124 |
+
label="📤 Ảnh gốc",
|
| 125 |
type="numpy",
|
| 126 |
+
height=500
|
| 127 |
)
|
| 128 |
|
| 129 |
+
with gr.Row():
|
| 130 |
+
apply_button = gr.Button(
|
| 131 |
+
"✨ Áp dụng bộ lọc",
|
| 132 |
+
variant="primary",
|
| 133 |
+
size="lg",
|
| 134 |
+
scale=2
|
| 135 |
+
)
|
| 136 |
+
reset_button = gr.Button(
|
| 137 |
+
"🔄 Làm mới",
|
| 138 |
+
variant="secondary",
|
| 139 |
+
size="lg",
|
| 140 |
+
scale=1
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Middle Column - Filter Selection & Parameters
|
| 144 |
+
with gr.Column(scale=1):
|
| 145 |
with gr.Group(elem_classes="control-panel"):
|
| 146 |
+
gr.Markdown("### 🎨 Chọn bộ lọc")
|
| 147 |
filter_select = gr.Dropdown(
|
| 148 |
+
label="Bộ lọc",
|
| 149 |
choices=filter_names,
|
| 150 |
value="Original",
|
| 151 |
interactive=True
|
|
|
|
| 156 |
elem_classes="filter-description"
|
| 157 |
)
|
| 158 |
|
| 159 |
+
gr.Markdown("### ⚙️ Tùy chỉnh")
|
| 160 |
# Tạo các điều khiển bộ lọc động
|
| 161 |
filter_controls = create_filter_controls()
|
| 162 |
+
|
| 163 |
+
# Right Column - Output
|
| 164 |
+
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Group(elem_classes="image-container"):
|
| 166 |
output_image = gr.Image(
|
| 167 |
label="✅ Ảnh đã chỉnh sửa",
|
| 168 |
+
height=500
|
| 169 |
)
|
| 170 |
+
|
| 171 |
error_message = gr.Markdown(visible=False)
|
| 172 |
|
| 173 |
with gr.Row():
|
| 174 |
+
download_button = gr.Button(
|
| 175 |
+
"💾 Tải xuống",
|
| 176 |
+
visible=False,
|
| 177 |
+
size="lg"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Stats panel
|
| 181 |
+
with gr.Row():
|
| 182 |
+
with gr.Column():
|
| 183 |
+
gr.Markdown(
|
| 184 |
+
f"""
|
| 185 |
+
<div class="stats-panel">
|
| 186 |
+
📊 <b>Tổng số bộ lọc:</b> {len(filter_names)} |
|
| 187 |
+
🎯 <b>Bộ lọc có tham số:</b> {sum(1 for f in filter_names if registry.params_map.get(f))} |
|
| 188 |
+
🚀 <b>Bộ lọc nhanh:</b> {sum(1 for f in filter_names if not registry.params_map.get(f))}
|
| 189 |
+
</div>
|
| 190 |
+
"""
|
| 191 |
+
)
|
| 192 |
|
| 193 |
# Xử lý cập nhật UI
|
| 194 |
def update_controls(filter_name):
|
|
|
|
| 262 |
|
| 263 |
if __name__ == "__main__":
|
| 264 |
app = create_app()
|
| 265 |
+
app.launch()
|
components.py
CHANGED
|
@@ -10,15 +10,13 @@ def create_filter_controls():
|
|
| 10 |
filter_controls_list = []
|
| 11 |
|
| 12 |
if params: # Only create controls if there are parameters
|
| 13 |
-
gr.Markdown(f"### Tùy chỉnh {filter_name}")
|
| 14 |
-
|
| 15 |
for param_name, config in params.items():
|
| 16 |
if config['type'] == int:
|
| 17 |
slider = gr.Slider(
|
| 18 |
minimum=config.get('min', 1),
|
| 19 |
maximum=config.get('max', 100),
|
| 20 |
value=config['default'],
|
| 21 |
-
label=param_name.replace('_', ' ').title(),
|
| 22 |
step=config.get('step', 1),
|
| 23 |
interactive=True
|
| 24 |
)
|
|
@@ -28,18 +26,18 @@ def create_filter_controls():
|
|
| 28 |
maximum=config.get('max', 10.0),
|
| 29 |
step=config.get('step', 0.1),
|
| 30 |
value=config['default'],
|
| 31 |
-
label=param_name.replace('_', ' ').title(),
|
| 32 |
interactive=True
|
| 33 |
)
|
| 34 |
elif config['type'] == bool:
|
| 35 |
slider = gr.Checkbox(
|
| 36 |
value=config['default'],
|
| 37 |
-
label=param_name.replace('_', ' ').title(),
|
| 38 |
interactive=True
|
| 39 |
)
|
| 40 |
filter_controls_list.append(slider)
|
| 41 |
else:
|
| 42 |
-
gr.Markdown("
|
| 43 |
|
| 44 |
filter_group.children = filter_controls_list
|
| 45 |
controls[filter_name] = filter_group
|
|
|
|
| 10 |
filter_controls_list = []
|
| 11 |
|
| 12 |
if params: # Only create controls if there are parameters
|
|
|
|
|
|
|
| 13 |
for param_name, config in params.items():
|
| 14 |
if config['type'] == int:
|
| 15 |
slider = gr.Slider(
|
| 16 |
minimum=config.get('min', 1),
|
| 17 |
maximum=config.get('max', 100),
|
| 18 |
value=config['default'],
|
| 19 |
+
label=f"🎚️ {param_name.replace('_', ' ').title()}",
|
| 20 |
step=config.get('step', 1),
|
| 21 |
interactive=True
|
| 22 |
)
|
|
|
|
| 26 |
maximum=config.get('max', 10.0),
|
| 27 |
step=config.get('step', 0.1),
|
| 28 |
value=config['default'],
|
| 29 |
+
label=f"🎚️ {param_name.replace('_', ' ').title()}",
|
| 30 |
interactive=True
|
| 31 |
)
|
| 32 |
elif config['type'] == bool:
|
| 33 |
slider = gr.Checkbox(
|
| 34 |
value=config['default'],
|
| 35 |
+
label=f"☑️ {param_name.replace('_', ' ').title()}",
|
| 36 |
interactive=True
|
| 37 |
)
|
| 38 |
filter_controls_list.append(slider)
|
| 39 |
else:
|
| 40 |
+
gr.Markdown("*✨ Bộ lọc này không có tham số tùy chỉnh - Nhấn 'Áp dụng' để sử dụng!*")
|
| 41 |
|
| 42 |
filter_group.children = filter_controls_list
|
| 43 |
controls[filter_name] = filter_group
|
filters.py
CHANGED
|
@@ -1,644 +1 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy as np
|
| 3 |
-
from registry import registry
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
@registry.register("Original")
|
| 7 |
-
def original(image):
|
| 8 |
-
return image
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
@registry.register("Dot Effect", defaults={
|
| 12 |
-
"dot_size": 10,
|
| 13 |
-
"dot_spacing": 2,
|
| 14 |
-
"invert": False,
|
| 15 |
-
}, min_vals={
|
| 16 |
-
"dot_size": 1,
|
| 17 |
-
"dot_spacing": 1,
|
| 18 |
-
}, max_vals={
|
| 19 |
-
"dot_size": 20,
|
| 20 |
-
"dot_spacing": 10,
|
| 21 |
-
}, step_vals={
|
| 22 |
-
"dot_size": 1,
|
| 23 |
-
"dot_spacing": 1,
|
| 24 |
-
})
|
| 25 |
-
def dot_effect(image, dot_size: int = 10, dot_spacing: int = 2, invert: bool = False):
|
| 26 |
-
"""
|
| 27 |
-
## Convert your image into a dotted pattern.
|
| 28 |
-
|
| 29 |
-
**Args:**
|
| 30 |
-
* `image` (numpy.ndarray): Input image (BGR or grayscale)
|
| 31 |
-
* `dot_size` (int): Size of each dot
|
| 32 |
-
* `dot_spacing` (int): Spacing between dots
|
| 33 |
-
* `invert` (bool): Invert the dots
|
| 34 |
-
|
| 35 |
-
**Returns:**
|
| 36 |
-
* `numpy.ndarray`: Dotted image
|
| 37 |
-
"""
|
| 38 |
-
# Convert to grayscale if image is color
|
| 39 |
-
if len(image.shape) == 3:
|
| 40 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 41 |
-
else:
|
| 42 |
-
gray = image
|
| 43 |
-
|
| 44 |
-
# Apply adaptive thresholding to improve contrast
|
| 45 |
-
gray = cv2.adaptiveThreshold(
|
| 46 |
-
gray,
|
| 47 |
-
255,
|
| 48 |
-
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 49 |
-
cv2.THRESH_BINARY,
|
| 50 |
-
25, # Block size
|
| 51 |
-
5 # Constant subtracted from mean
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
height, width = gray.shape
|
| 55 |
-
canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255)
|
| 56 |
-
|
| 57 |
-
y_dots = range(0, height, dot_size + dot_spacing)
|
| 58 |
-
x_dots = range(0, width, dot_size + dot_spacing)
|
| 59 |
-
|
| 60 |
-
dot_color = 255 if not invert else 0
|
| 61 |
-
for y in y_dots:
|
| 62 |
-
for x in x_dots:
|
| 63 |
-
region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)]
|
| 64 |
-
if region.size > 0:
|
| 65 |
-
brightness = np.mean(region)
|
| 66 |
-
|
| 67 |
-
# Dynamic dot sizing based on brightness
|
| 68 |
-
relative_brightness = brightness / 255.0
|
| 69 |
-
if invert:
|
| 70 |
-
relative_brightness = 1 - relative_brightness
|
| 71 |
-
|
| 72 |
-
# Draw circle with size proportional to brightness
|
| 73 |
-
radius = int((dot_size/2) * relative_brightness)
|
| 74 |
-
if radius > 0:
|
| 75 |
-
cv2.circle(canvas,
|
| 76 |
-
(x + dot_size//2, y + dot_size//2),
|
| 77 |
-
radius,
|
| 78 |
-
(dot_color),
|
| 79 |
-
-1)
|
| 80 |
-
|
| 81 |
-
return canvas
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
@registry.register("Pixelize", defaults={
|
| 85 |
-
"pixel_size": 10,
|
| 86 |
-
}, min_vals={
|
| 87 |
-
"pixel_size": 1,
|
| 88 |
-
}, max_vals={
|
| 89 |
-
"pixel_size": 50,
|
| 90 |
-
}, step_vals={
|
| 91 |
-
"pixel_size": 1,
|
| 92 |
-
})
|
| 93 |
-
def pixelize(image, pixel_size: int = 10):
|
| 94 |
-
"""
|
| 95 |
-
## Apply a pixelization effect to the image.
|
| 96 |
-
|
| 97 |
-
**Args:**
|
| 98 |
-
* `image` (numpy.ndarray): Input image (BGR or grayscale)
|
| 99 |
-
* `pixel_size` (int): Size of each pixel block
|
| 100 |
-
|
| 101 |
-
**Returns:**
|
| 102 |
-
* `numpy.ndarray`: Pixelized image
|
| 103 |
-
"""
|
| 104 |
-
height, width = image.shape[:2]
|
| 105 |
-
|
| 106 |
-
# Resize the image to a smaller size
|
| 107 |
-
small_height = height // pixel_size
|
| 108 |
-
small_width = width // pixel_size
|
| 109 |
-
small_image = cv2.resize(
|
| 110 |
-
image, (small_width, small_height), interpolation=cv2.INTER_LINEAR)
|
| 111 |
-
|
| 112 |
-
# Resize back to the original size with nearest neighbor interpolation
|
| 113 |
-
pixelized_image = cv2.resize(
|
| 114 |
-
small_image, (width, height), interpolation=cv2.INTER_NEAREST)
|
| 115 |
-
|
| 116 |
-
return pixelized_image
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
@registry.register("Sketch Effect")
|
| 120 |
-
def sketch_effect(image):
|
| 121 |
-
"""
|
| 122 |
-
## Apply a sketch effect to the image.
|
| 123 |
-
|
| 124 |
-
**Args:**
|
| 125 |
-
* `image` (numpy.ndarray): Input image (BGR or grayscale)
|
| 126 |
-
|
| 127 |
-
**Returns:**
|
| 128 |
-
* `numpy.ndarray`: Sketch effect applied image
|
| 129 |
-
"""
|
| 130 |
-
# Convert the image to grayscale
|
| 131 |
-
if len(image.shape) == 3:
|
| 132 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 133 |
-
else:
|
| 134 |
-
gray = image
|
| 135 |
-
|
| 136 |
-
# Invert the grayscale image
|
| 137 |
-
inverted_gray = cv2.bitwise_not(gray)
|
| 138 |
-
|
| 139 |
-
# Apply Gaussian blur to the inverted image
|
| 140 |
-
blurred = cv2.GaussianBlur(inverted_gray, (21, 21), 0) # Fixed kernel size
|
| 141 |
-
|
| 142 |
-
# Blend the grayscale image with the blurred inverted image
|
| 143 |
-
sketch = cv2.divide(gray, 255 - blurred, scale=256)
|
| 144 |
-
|
| 145 |
-
return sketch
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
@registry.register("Warm", defaults={
|
| 149 |
-
"intensity": 30,
|
| 150 |
-
}, min_vals={
|
| 151 |
-
"intensity": 0,
|
| 152 |
-
}, max_vals={
|
| 153 |
-
"intensity": 100,
|
| 154 |
-
}, step_vals={
|
| 155 |
-
"intensity": 1,
|
| 156 |
-
})
|
| 157 |
-
def warm_filter(image, intensity: int = 30):
|
| 158 |
-
"""
|
| 159 |
-
## Adds a warm color effect to the image.
|
| 160 |
-
|
| 161 |
-
**Args:**
|
| 162 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 163 |
-
* `intensity` (int): Intensity of the warm effect (0-100)
|
| 164 |
-
|
| 165 |
-
**Returns:**
|
| 166 |
-
* `numpy.ndarray`: Image with warm color effect
|
| 167 |
-
"""
|
| 168 |
-
# Convert intensity to actual adjustment values
|
| 169 |
-
intensity_scale = intensity / 100.0
|
| 170 |
-
|
| 171 |
-
# Split the image into BGR channels
|
| 172 |
-
b, g, r = cv2.split(image.astype(np.float32))
|
| 173 |
-
|
| 174 |
-
# Increase red, slightly increase green, decrease blue
|
| 175 |
-
r = np.clip(r * (1 + 0.5 * intensity_scale), 0, 255)
|
| 176 |
-
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
| 177 |
-
b = np.clip(b * (1 - 0.1 * intensity_scale), 0, 255)
|
| 178 |
-
|
| 179 |
-
return cv2.merge([b, g, r]).astype(np.uint8)
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
@registry.register("Cool", defaults={
|
| 183 |
-
"intensity": 30,
|
| 184 |
-
}, min_vals={
|
| 185 |
-
"intensity": 0,
|
| 186 |
-
}, max_vals={
|
| 187 |
-
"intensity": 100,
|
| 188 |
-
}, step_vals={
|
| 189 |
-
"intensity": 1,
|
| 190 |
-
})
|
| 191 |
-
def cool_filter(image, intensity: int = 30):
|
| 192 |
-
"""
|
| 193 |
-
## Adds a cool color effect to the image.
|
| 194 |
-
|
| 195 |
-
**Args:**
|
| 196 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 197 |
-
* `intensity` (int): Intensity of the cool effect (0-100)
|
| 198 |
-
|
| 199 |
-
**Returns:**
|
| 200 |
-
* `numpy.ndarray`: Image with cool color effect
|
| 201 |
-
"""
|
| 202 |
-
# Convert intensity to actual adjustment values
|
| 203 |
-
intensity_scale = intensity / 100.0
|
| 204 |
-
|
| 205 |
-
# Split the image into BGR channels
|
| 206 |
-
b, g, r = cv2.split(image.astype(np.float32))
|
| 207 |
-
|
| 208 |
-
# Increase blue, slightly increase green, decrease red
|
| 209 |
-
b = np.clip(b * (1 + 0.5 * intensity_scale), 0, 255)
|
| 210 |
-
g = np.clip(g * (1 + 0.1 * intensity_scale), 0, 255)
|
| 211 |
-
r = np.clip(r * (1 - 0.1 * intensity_scale), 0, 255)
|
| 212 |
-
|
| 213 |
-
return cv2.merge([b, g, r]).astype(np.uint8)
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
@registry.register("Saturation", defaults={
|
| 217 |
-
"factor": 50,
|
| 218 |
-
}, min_vals={
|
| 219 |
-
"factor": 0,
|
| 220 |
-
}, max_vals={
|
| 221 |
-
"factor": 100,
|
| 222 |
-
}, step_vals={
|
| 223 |
-
"factor": 1,
|
| 224 |
-
})
|
| 225 |
-
def adjust_saturation(image, factor: int = 50):
|
| 226 |
-
"""
|
| 227 |
-
## Adjusts the saturation of the image.
|
| 228 |
-
|
| 229 |
-
**Args:**
|
| 230 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 231 |
-
* `factor` (int): Saturation factor (0-100, 50 is normal)
|
| 232 |
-
|
| 233 |
-
**Returns:**
|
| 234 |
-
* `numpy.ndarray`: Image with adjusted saturation
|
| 235 |
-
"""
|
| 236 |
-
# Convert factor to multiplication value (0.0 to 2.0)
|
| 237 |
-
factor = (factor / 50.0)
|
| 238 |
-
|
| 239 |
-
# Convert to HSV
|
| 240 |
-
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
|
| 241 |
-
|
| 242 |
-
# Adjust saturation
|
| 243 |
-
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * factor, 0, 255)
|
| 244 |
-
|
| 245 |
-
# Convert back to BGR
|
| 246 |
-
return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
@registry.register("Vintage", defaults={
|
| 250 |
-
"intensity": 50,
|
| 251 |
-
}, min_vals={
|
| 252 |
-
"intensity": 0,
|
| 253 |
-
}, max_vals={
|
| 254 |
-
"intensity": 100,
|
| 255 |
-
}, step_vals={
|
| 256 |
-
"intensity": 1,
|
| 257 |
-
})
|
| 258 |
-
def vintage_filter(image, intensity: int = 50):
|
| 259 |
-
"""
|
| 260 |
-
## Adds a vintage/retro effect to the image.
|
| 261 |
-
|
| 262 |
-
**Args:**
|
| 263 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 264 |
-
* `intensity` (int): Intensity of the vintage effect (0-100)
|
| 265 |
-
|
| 266 |
-
**Returns:**
|
| 267 |
-
* `numpy.ndarray`: Image with vintage effect
|
| 268 |
-
"""
|
| 269 |
-
intensity_scale = intensity / 100.0
|
| 270 |
-
|
| 271 |
-
# Split channels
|
| 272 |
-
b, g, r = cv2.split(image.astype(np.float32))
|
| 273 |
-
|
| 274 |
-
# Adjust colors for vintage look
|
| 275 |
-
r = np.clip(r * (1 + 0.3 * intensity_scale), 0, 255)
|
| 276 |
-
g = np.clip(g * (1 - 0.1 * intensity_scale), 0, 255)
|
| 277 |
-
b = np.clip(b * (1 - 0.2 * intensity_scale), 0, 255)
|
| 278 |
-
|
| 279 |
-
# Create sepia-like effect
|
| 280 |
-
result = cv2.merge([b, g, r]).astype(np.uint8)
|
| 281 |
-
|
| 282 |
-
# Add slight blur for softness
|
| 283 |
-
if intensity > 0:
|
| 284 |
-
blur_amount = int(3 * intensity_scale) * 2 + 1
|
| 285 |
-
result = cv2.GaussianBlur(result, (blur_amount, blur_amount), 0)
|
| 286 |
-
|
| 287 |
-
return result
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
@registry.register("Vignette", defaults={
|
| 291 |
-
"intensity": 50,
|
| 292 |
-
}, min_vals={
|
| 293 |
-
"intensity": 0,
|
| 294 |
-
}, max_vals={
|
| 295 |
-
"intensity": 100,
|
| 296 |
-
}, step_vals={
|
| 297 |
-
"intensity": 1,
|
| 298 |
-
})
|
| 299 |
-
def vignette_effect(image, intensity: int = 50):
|
| 300 |
-
"""
|
| 301 |
-
## Adds a vignette effect (darker corners) to the image.
|
| 302 |
-
|
| 303 |
-
**Args:**
|
| 304 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 305 |
-
* `intensity` (int): Intensity of the vignette (0-100)
|
| 306 |
-
|
| 307 |
-
**Returns:**
|
| 308 |
-
* `numpy.ndarray`: Image with vignette effect
|
| 309 |
-
"""
|
| 310 |
-
height, width = image.shape[:2]
|
| 311 |
-
|
| 312 |
-
# Create a vignette mask
|
| 313 |
-
X_resultant = np.abs(np.linspace(-1, 1, width)[None, :])
|
| 314 |
-
Y_resultant = np.abs(np.linspace(-1, 1, height)[:, None])
|
| 315 |
-
mask = np.sqrt(X_resultant**2 + Y_resultant**2)
|
| 316 |
-
mask = 1 - np.clip(mask, 0, 1)
|
| 317 |
-
|
| 318 |
-
# Adjust mask based on intensity
|
| 319 |
-
mask = (mask - mask.min()) / (mask.max() - mask.min())
|
| 320 |
-
mask = mask ** (1 + intensity/50)
|
| 321 |
-
|
| 322 |
-
# Apply mask to image
|
| 323 |
-
mask = mask[:, :, None]
|
| 324 |
-
result = image.astype(np.float32) * mask
|
| 325 |
-
|
| 326 |
-
return np.clip(result, 0, 255).astype(np.uint8)
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
@registry.register("HDR Effect", defaults={
|
| 330 |
-
"strength": 50,
|
| 331 |
-
}, min_vals={
|
| 332 |
-
"strength": 0,
|
| 333 |
-
}, max_vals={
|
| 334 |
-
"strength": 100,
|
| 335 |
-
}, step_vals={
|
| 336 |
-
"strength": 1,
|
| 337 |
-
})
|
| 338 |
-
def hdr_effect(image, strength: int = 50):
|
| 339 |
-
"""
|
| 340 |
-
## Applies an HDR-like effect to enhance image details.
|
| 341 |
-
|
| 342 |
-
**Args:**
|
| 343 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 344 |
-
* `strength` (int): Strength of the HDR effect (0-100)
|
| 345 |
-
|
| 346 |
-
**Returns:**
|
| 347 |
-
* `numpy.ndarray`: Image with HDR-like effect
|
| 348 |
-
"""
|
| 349 |
-
strength_scale = strength / 100.0
|
| 350 |
-
|
| 351 |
-
# Convert to LAB color space
|
| 352 |
-
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB).astype(np.float32)
|
| 353 |
-
|
| 354 |
-
# Split channels
|
| 355 |
-
l, a, b = cv2.split(lab)
|
| 356 |
-
|
| 357 |
-
# Apply CLAHE to L channel
|
| 358 |
-
clahe = cv2.createCLAHE(
|
| 359 |
-
clipLimit=3.0 * strength_scale, tileGridSize=(8, 8))
|
| 360 |
-
l = clahe.apply(l.astype(np.uint8)).astype(np.float32)
|
| 361 |
-
|
| 362 |
-
# Enhance local contrast
|
| 363 |
-
if strength > 0:
|
| 364 |
-
blur = cv2.GaussianBlur(l, (0, 0), 3)
|
| 365 |
-
detail = cv2.addWeighted(
|
| 366 |
-
l, 1 + strength_scale, blur, -strength_scale, 0)
|
| 367 |
-
l = cv2.addWeighted(l, 1 - strength_scale/2,
|
| 368 |
-
detail, strength_scale/2, 0)
|
| 369 |
-
|
| 370 |
-
# Merge channels and convert back
|
| 371 |
-
enhanced_lab = cv2.merge([l, a, b])
|
| 372 |
-
result = cv2.cvtColor(enhanced_lab.astype(np.uint8), cv2.COLOR_LAB2BGR)
|
| 373 |
-
|
| 374 |
-
return result
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
@registry.register("Gaussian Blur", defaults={
|
| 378 |
-
"kernel_size": 5,
|
| 379 |
-
}, min_vals={
|
| 380 |
-
"kernel_size": 1,
|
| 381 |
-
}, max_vals={
|
| 382 |
-
"kernel_size": 31,
|
| 383 |
-
}, step_vals={
|
| 384 |
-
"kernel_size": 2,
|
| 385 |
-
})
|
| 386 |
-
def gaussian_blur(image, kernel_size: int = 5):
|
| 387 |
-
"""
|
| 388 |
-
## Apply Gaussian blur effect to the image.
|
| 389 |
-
|
| 390 |
-
**Args:**
|
| 391 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 392 |
-
* `kernel_size` (int): Size of the Gaussian kernel (must be odd)
|
| 393 |
-
|
| 394 |
-
**Returns:**
|
| 395 |
-
* `numpy.ndarray`: Blurred image
|
| 396 |
-
"""
|
| 397 |
-
# Ensure kernel size is odd
|
| 398 |
-
if kernel_size % 2 == 0:
|
| 399 |
-
kernel_size += 1
|
| 400 |
-
|
| 401 |
-
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
@registry.register("Sharpen", defaults={
|
| 405 |
-
"amount": 50,
|
| 406 |
-
}, min_vals={
|
| 407 |
-
"amount": 0,
|
| 408 |
-
}, max_vals={
|
| 409 |
-
"amount": 100,
|
| 410 |
-
}, step_vals={
|
| 411 |
-
"amount": 1,
|
| 412 |
-
})
|
| 413 |
-
def sharpen(image, amount: int = 50):
|
| 414 |
-
"""
|
| 415 |
-
## Sharpen the image.
|
| 416 |
-
|
| 417 |
-
**Args:**
|
| 418 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 419 |
-
* `amount` (int): Sharpening intensity (0-100)
|
| 420 |
-
|
| 421 |
-
**Returns:**
|
| 422 |
-
* `numpy.ndarray`: Sharpened image
|
| 423 |
-
"""
|
| 424 |
-
amount = amount / 100.0
|
| 425 |
-
|
| 426 |
-
# Create the sharpening kernel
|
| 427 |
-
kernel = np.array([[-1, -1, -1],
|
| 428 |
-
[-1, 9, -1],
|
| 429 |
-
[-1, -1, -1]])
|
| 430 |
-
|
| 431 |
-
# Apply the kernel
|
| 432 |
-
sharpened = cv2.filter2D(image, -1, kernel)
|
| 433 |
-
|
| 434 |
-
# Blend with original image based on amount
|
| 435 |
-
return cv2.addWeighted(image, 1 - amount, sharpened, amount, 0)
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
@registry.register("Emboss", defaults={
|
| 439 |
-
"strength": 50,
|
| 440 |
-
"direction": 0,
|
| 441 |
-
}, min_vals={
|
| 442 |
-
"strength": 0,
|
| 443 |
-
"direction": 0,
|
| 444 |
-
}, max_vals={
|
| 445 |
-
"strength": 100,
|
| 446 |
-
"direction": 7,
|
| 447 |
-
}, step_vals={
|
| 448 |
-
"strength": 1,
|
| 449 |
-
"direction": 1,
|
| 450 |
-
})
|
| 451 |
-
def emboss(image, strength: int = 50, direction: int = 0):
|
| 452 |
-
"""
|
| 453 |
-
## Apply emboss effect to create a 3D look.
|
| 454 |
-
|
| 455 |
-
**Args:**
|
| 456 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 457 |
-
* `strength` (int): Emboss strength (0-100)
|
| 458 |
-
* `direction` (int): Direction of emboss effect (0-7)
|
| 459 |
-
|
| 460 |
-
**Returns:**
|
| 461 |
-
* `numpy.ndarray`: Embossed image
|
| 462 |
-
"""
|
| 463 |
-
strength = strength / 100.0 * 2.0 # Scale to 0-2 range
|
| 464 |
-
|
| 465 |
-
# Define kernels for different directions
|
| 466 |
-
kernels = [
|
| 467 |
-
np.array([[-1, -1, 0],
|
| 468 |
-
[-1, 1, 1],
|
| 469 |
-
[0, 1, 1]]), # 0 - top left to bottom right
|
| 470 |
-
np.array([[-1, 0, 1],
|
| 471 |
-
[-1, 1, 1],
|
| 472 |
-
[-1, 0, 1]]), # 1 - left to right
|
| 473 |
-
np.array([[0, 1, 1],
|
| 474 |
-
[-1, 1, 1],
|
| 475 |
-
[-1, -1, 0]]), # 2 - bottom left to top right
|
| 476 |
-
np.array([[1, 1, 1],
|
| 477 |
-
[0, 1, 0],
|
| 478 |
-
[-1, -1, -1]]), # 3 - bottom to top
|
| 479 |
-
np.array([[1, 1, 0],
|
| 480 |
-
[1, 1, -1],
|
| 481 |
-
[0, -1, -1]]), # 4 - bottom right to top left
|
| 482 |
-
np.array([[1, 0, -1],
|
| 483 |
-
[1, 1, -1],
|
| 484 |
-
[1, 0, -1]]), # 5 - right to left
|
| 485 |
-
np.array([[0, -1, -1],
|
| 486 |
-
[1, 1, -1],
|
| 487 |
-
[1, 1, 0]]), # 6 - top right to bottom left
|
| 488 |
-
np.array([[-1, -1, -1],
|
| 489 |
-
[0, 1, 0],
|
| 490 |
-
[1, 1, 1]]) # 7 - top to bottom
|
| 491 |
-
]
|
| 492 |
-
|
| 493 |
-
# Apply the kernel
|
| 494 |
-
kernel = kernels[direction % 8]
|
| 495 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 496 |
-
embossed = cv2.filter2D(gray, -1, kernel * strength)
|
| 497 |
-
|
| 498 |
-
# Normalize to ensure good contrast
|
| 499 |
-
embossed = cv2.normalize(embossed, None, 0, 255, cv2.NORM_MINMAX)
|
| 500 |
-
|
| 501 |
-
# Convert back to BGR
|
| 502 |
-
return cv2.cvtColor(embossed.astype(np.uint8), cv2.COLOR_GRAY2BGR)
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
@registry.register("Oil Painting", defaults={
|
| 506 |
-
"size": 5,
|
| 507 |
-
"dynRatio": 1,
|
| 508 |
-
}, min_vals={
|
| 509 |
-
"size": 1,
|
| 510 |
-
"dynRatio": 1,
|
| 511 |
-
}, max_vals={
|
| 512 |
-
"size": 15,
|
| 513 |
-
"dynRatio": 7,
|
| 514 |
-
}, step_vals={
|
| 515 |
-
"size": 2,
|
| 516 |
-
"dynRatio": 1,
|
| 517 |
-
})
|
| 518 |
-
def oil_painting(image, size: int = 5, dynRatio: int = 1):
|
| 519 |
-
"""
|
| 520 |
-
## Apply oil painting effect to the image.
|
| 521 |
-
|
| 522 |
-
**Args:**
|
| 523 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 524 |
-
* `size` (int): Size of the neighborhood considered
|
| 525 |
-
* `dynRatio` (int): Dynamic ratio affecting the intensity binning
|
| 526 |
-
|
| 527 |
-
**Returns:**
|
| 528 |
-
* `numpy.ndarray`: Image with oil painting effect
|
| 529 |
-
"""
|
| 530 |
-
return cv2.xphoto.oilPainting(image, size, dynRatio)
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
@registry.register("Black and White")
|
| 534 |
-
def black_and_white(image):
|
| 535 |
-
"""
|
| 536 |
-
## Convert image to classic black and white.
|
| 537 |
-
|
| 538 |
-
**Args:**
|
| 539 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 540 |
-
|
| 541 |
-
**Returns:**
|
| 542 |
-
* `numpy.ndarray`: Grayscale image
|
| 543 |
-
"""
|
| 544 |
-
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
@registry.register("Sepia")
|
| 548 |
-
def sepia(image):
|
| 549 |
-
"""
|
| 550 |
-
## Apply a warm sepia tone effect.
|
| 551 |
-
|
| 552 |
-
**Args:**
|
| 553 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 554 |
-
|
| 555 |
-
**Returns:**
|
| 556 |
-
* `numpy.ndarray`: Sepia toned image
|
| 557 |
-
"""
|
| 558 |
-
# Convert to RGB
|
| 559 |
-
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 560 |
-
|
| 561 |
-
# Apply sepia matrix
|
| 562 |
-
sepia_matrix = np.array([
|
| 563 |
-
[0.393, 0.769, 0.189],
|
| 564 |
-
[0.349, 0.686, 0.168],
|
| 565 |
-
[0.272, 0.534, 0.131]
|
| 566 |
-
])
|
| 567 |
-
|
| 568 |
-
sepia_image = np.dot(rgb, sepia_matrix.T)
|
| 569 |
-
sepia_image = np.clip(sepia_image, 0, 255)
|
| 570 |
-
|
| 571 |
-
return cv2.cvtColor(sepia_image.astype(np.uint8), cv2.COLOR_RGB2BGR)
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
@registry.register("Negative")
|
| 575 |
-
def negative(image):
|
| 576 |
-
"""
|
| 577 |
-
## Invert colors to create a negative effect.
|
| 578 |
-
|
| 579 |
-
**Args:**
|
| 580 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 581 |
-
|
| 582 |
-
**Returns:**
|
| 583 |
-
* `numpy.ndarray`: Negative image
|
| 584 |
-
"""
|
| 585 |
-
return cv2.bitwise_not(image)
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
@registry.register("Watercolor")
|
| 589 |
-
def watercolor(image):
|
| 590 |
-
"""
|
| 591 |
-
## Apply a watercolor painting effect.
|
| 592 |
-
|
| 593 |
-
**Args:**
|
| 594 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 595 |
-
|
| 596 |
-
**Returns:**
|
| 597 |
-
* `numpy.ndarray`: Watercolor effect image
|
| 598 |
-
"""
|
| 599 |
-
# Apply bilateral filter to create watercolor effect
|
| 600 |
-
return cv2.xphoto.oilPainting(image, 7, 1)
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
@registry.register("Posterization")
|
| 604 |
-
def posterize(image):
|
| 605 |
-
"""
|
| 606 |
-
## Reduce colors to create a posterization effect.
|
| 607 |
-
|
| 608 |
-
**Args:**
|
| 609 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 610 |
-
|
| 611 |
-
**Returns:**
|
| 612 |
-
* `numpy.ndarray`: Posterized image
|
| 613 |
-
"""
|
| 614 |
-
# Convert to HSV
|
| 615 |
-
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
| 616 |
-
|
| 617 |
-
# Reduce color levels
|
| 618 |
-
hsv[:, :, 1] = cv2.equalizeHist(hsv[:, :, 1])
|
| 619 |
-
hsv[:, :, 2] = cv2.equalizeHist(hsv[:, :, 2])
|
| 620 |
-
|
| 621 |
-
# Convert back to BGR
|
| 622 |
-
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
@registry.register("Cross Process")
|
| 626 |
-
def cross_process(image):
|
| 627 |
-
"""
|
| 628 |
-
## Apply a film cross-processing effect.
|
| 629 |
-
|
| 630 |
-
**Args:**
|
| 631 |
-
* `image` (numpy.ndarray): Input image (BGR)
|
| 632 |
-
|
| 633 |
-
**Returns:**
|
| 634 |
-
* `numpy.ndarray`: Cross-processed image
|
| 635 |
-
"""
|
| 636 |
-
# Split channels
|
| 637 |
-
b, g, r = cv2.split(image.astype(np.float32))
|
| 638 |
-
|
| 639 |
-
# Apply cross-process transformation
|
| 640 |
-
b = np.clip(b * 1.2, 0, 255)
|
| 641 |
-
g = np.clip(g * 0.8, 0, 255)
|
| 642 |
-
r = np.clip(r * 1.4, 0, 255)
|
| 643 |
-
|
| 644 |
-
return cv2.merge([b, g, r]).astype(np.uint8)
|
|
|
|
| 1 |
+
*(Giữ nguyên file filters.py)*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
registry.py
CHANGED
|
@@ -1,36 +1,28 @@
|
|
| 1 |
-
|
| 2 |
-
import inspect
|
| 3 |
|
| 4 |
-
|
| 5 |
-
def __init__(self):
|
| 6 |
-
self.filters = {}
|
| 7 |
-
self.params_map = {}
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
min_vals = {}
|
| 14 |
-
if max_vals is None:
|
| 15 |
-
max_vals = {}
|
| 16 |
-
if step_vals is None:
|
| 17 |
-
step_vals = {}
|
| 18 |
-
def decorator(func):
|
| 19 |
-
self.filters[name] = func
|
| 20 |
-
sig = inspect.signature(func)
|
| 21 |
-
params = {}
|
| 22 |
-
for param in sig.parameters.values():
|
| 23 |
-
if param.name == 'image':
|
| 24 |
-
continue
|
| 25 |
-
params[param.name] = {
|
| 26 |
-
'type': param.annotation,
|
| 27 |
-
'default': param.default if param.default != inspect.Parameter.empty else defaults.get(param.name),
|
| 28 |
-
'min': min_vals.get(param.name),
|
| 29 |
-
'max': max_vals.get(param.name),
|
| 30 |
-
'step': step_vals.get(param.name)
|
| 31 |
-
}
|
| 32 |
-
self.params_map[name] = params
|
| 33 |
-
return func
|
| 34 |
-
return decorator
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*(Giữ nguyên file registry.py)*
|
|
|
|
| 2 |
|
| 3 |
+
**Các cải tiến đã thực hiện:**
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
1. **📐 Bố cục mới (3 cột):**
|
| 6 |
+
- Cột trái (scale=2): Ảnh đầu vào + nút điều khiển chính
|
| 7 |
+
- Cột giữa (scale=1): Chọn bộ lọc + tham số tùy chỉnh
|
| 8 |
+
- Cột phải (scale=2): Ảnh đầu ra
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
2. **🌓 Tương thích Dark Mode:**
|
| 11 |
+
- CSS riêng cho `.dark` class
|
| 12 |
+
- Background và màu chữ tự động điều chỉnh
|
| 13 |
+
- Border và shadow tối ưu cho cả 2 chế độ
|
| 14 |
+
|
| 15 |
+
3. **🎨 Cải thiện UX:**
|
| 16 |
+
- Ảnh lớn hơn (500px thay vì 400px)
|
| 17 |
+
- Nút điều khiển to và rõ ràng hơn
|
| 18 |
+
- Thêm panel thống kê số lượng bộ lọc
|
| 19 |
+
- Icon emoji cho các control
|
| 20 |
+
|
| 21 |
+
4. **✨ Hiệu ứng:**
|
| 22 |
+
- Hover effect mượt mà
|
| 23 |
+
- Transform và shadow động
|
| 24 |
+
- Transition animation
|
| 25 |
+
|
| 26 |
+
5. **📱 Responsive:**
|
| 27 |
+
- Tối ưu cho màn hình lớn với max-width 1600px
|
| 28 |
+
- Scale cột hợp lý để hiển thị tốt nhất
|