Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import random
|
| 3 |
from typing import Callable, Dict, Optional, Tuple
|
| 4 |
|
|
@@ -9,7 +10,7 @@ import spaces
|
|
| 9 |
import torch
|
| 10 |
|
| 11 |
from transformers import CLIPTextModel
|
| 12 |
-
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
| 13 |
|
| 14 |
MODEL = "eienmojiki/Starry-XL-v5.2"
|
| 15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -93,6 +94,28 @@ def load_pipeline(model_name):
|
|
| 93 |
pipe.to(device)
|
| 94 |
return pipe
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
@spaces.GPU(enable_queue=False)
|
| 97 |
def generate(
|
| 98 |
prompt: str,
|
|
@@ -118,9 +141,11 @@ def generate(
|
|
| 118 |
|
| 119 |
pipe.to(device)
|
| 120 |
|
|
|
|
|
|
|
| 121 |
try:
|
| 122 |
|
| 123 |
-
|
| 124 |
prompt = prompt,
|
| 125 |
negative_prompt = negative_prompt,
|
| 126 |
width = width,
|
|
@@ -129,6 +154,19 @@ def generate(
|
|
| 129 |
num_inference_steps = num_inference_steps,
|
| 130 |
generator = generator,
|
| 131 |
num_images_per_prompt=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
output_type="pil",
|
| 133 |
).images[0]
|
| 134 |
|
|
@@ -136,6 +174,9 @@ def generate(
|
|
| 136 |
|
| 137 |
except Exception as e:
|
| 138 |
print(f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
if torch.cuda.is_available():
|
| 141 |
pipe = load_pipeline(MODEL)
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gc
|
| 3 |
import random
|
| 4 |
from typing import Callable, Dict, Optional, Tuple
|
| 5 |
|
|
|
|
| 10 |
import torch
|
| 11 |
|
| 12 |
from transformers import CLIPTextModel
|
| 13 |
+
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
| 14 |
|
| 15 |
MODEL = "eienmojiki/Starry-XL-v5.2"
|
| 16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 94 |
pipe.to(device)
|
| 95 |
return pipe
|
| 96 |
|
| 97 |
+
def common_upscale(
|
| 98 |
+
samples: torch.Tensor,
|
| 99 |
+
width: int,
|
| 100 |
+
height: int,
|
| 101 |
+
upscale_method: str,
|
| 102 |
+
) -> torch.Tensor:
|
| 103 |
+
return torch.nn.functional.interpolate(
|
| 104 |
+
samples, size=(height, width), mode=upscale_method
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def upscale(
|
| 109 |
+
samples: torch.Tensor, upscale_method: str, scale_by: float
|
| 110 |
+
) -> torch.Tensor:
|
| 111 |
+
width = round(samples.shape[3] * scale_by)
|
| 112 |
+
height = round(samples.shape[2] * scale_by)
|
| 113 |
+
return common_upscale(samples, width, height, upscale_method)
|
| 114 |
+
|
| 115 |
+
def free_memory() -> None:
|
| 116 |
+
torch.cuda.empty_cache()
|
| 117 |
+
gc.collect()
|
| 118 |
+
|
| 119 |
@spaces.GPU(enable_queue=False)
|
| 120 |
def generate(
|
| 121 |
prompt: str,
|
|
|
|
| 141 |
|
| 142 |
pipe.to(device)
|
| 143 |
|
| 144 |
+
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
| 145 |
+
|
| 146 |
try:
|
| 147 |
|
| 148 |
+
latents = pipe(
|
| 149 |
prompt = prompt,
|
| 150 |
negative_prompt = negative_prompt,
|
| 151 |
width = width,
|
|
|
|
| 154 |
num_inference_steps = num_inference_steps,
|
| 155 |
generator = generator,
|
| 156 |
num_images_per_prompt=1,
|
| 157 |
+
output_type="latents",
|
| 158 |
+
).images
|
| 159 |
+
|
| 160 |
+
upscaled_latents = upscale(latents, "nearest-exact", 2.0)
|
| 161 |
+
|
| 162 |
+
img = upscaler_pipe(
|
| 163 |
+
prompt=prompt,
|
| 164 |
+
negative_prompt=negative_prompt,
|
| 165 |
+
image=upscaled_latents,
|
| 166 |
+
guidance_scale=guidance_scale,
|
| 167 |
+
num_inference_steps=num_inference_steps,
|
| 168 |
+
strength=0.55,
|
| 169 |
+
generator=generator,
|
| 170 |
output_type="pil",
|
| 171 |
).images[0]
|
| 172 |
|
|
|
|
| 174 |
|
| 175 |
except Exception as e:
|
| 176 |
print(f"An error occurred: {e}")
|
| 177 |
+
finally:
|
| 178 |
+
del upscaler_pipe
|
| 179 |
+
free_memory()
|
| 180 |
|
| 181 |
if torch.cuda.is_available():
|
| 182 |
pipe = load_pipeline(MODEL)
|