Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,13 @@ import torch
|
|
| 3 |
from transformers import BertTokenizerFast, BertForTokenClassification
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
#
|
| 7 |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
| 8 |
-
model = BertForTokenClassification.from_pretrained('
|
| 9 |
model.eval()
|
| 10 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
|
| 12 |
-
#
|
| 13 |
id2label = {
|
| 14 |
0: 'O',
|
| 15 |
1: 'B-STEREO',
|
|
@@ -20,8 +20,35 @@ id2label = {
|
|
| 20 |
6: 'I-UNFAIR'
|
| 21 |
}
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
| 26 |
input_ids = inputs['input_ids'].to(model.device)
|
| 27 |
attention_mask = inputs['attention_mask'].to(model.device)
|
|
@@ -30,29 +57,111 @@ def predict_ner_tags(sentence):
|
|
| 30 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 31 |
logits = outputs.logits
|
| 32 |
probabilities = torch.sigmoid(logits)
|
| 33 |
-
predicted_labels = (probabilities > 0.5).int() # remember to try your own threshold
|
| 34 |
|
| 35 |
-
result = []
|
| 36 |
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
|
|
|
| 37 |
for i, token in enumerate(tokens):
|
| 38 |
if token not in tokenizer.all_special_tokens:
|
| 39 |
-
label_indices = (
|
| 40 |
-
labels = [
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers import BertTokenizerFast, BertForTokenClassification
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
# Initialize tokenizer and model
|
| 7 |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
| 8 |
+
model = BertForTokenClassification.from_pretrained('ethical-spectacle/social-bias-ner')
|
| 9 |
model.eval()
|
| 10 |
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
|
| 12 |
+
# Mapping IDs to labels
|
| 13 |
id2label = {
|
| 14 |
0: 'O',
|
| 15 |
1: 'B-STEREO',
|
|
|
|
| 20 |
6: 'I-UNFAIR'
|
| 21 |
}
|
| 22 |
|
| 23 |
+
# Entity colors for highlights
|
| 24 |
+
label_colors = {
|
| 25 |
+
"STEREO": "rgba(255, 0, 0, 0.2)", # Light Red
|
| 26 |
+
"GEN": "rgba(0, 0, 255, 0.2)", # Light Blue
|
| 27 |
+
"UNFAIR": "rgba(0, 255, 0, 0.2)" # Light Green
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
# Post-process entity tags
|
| 31 |
+
def post_process_entities(result):
|
| 32 |
+
prev_entity_type = None
|
| 33 |
+
for token_data in result:
|
| 34 |
+
labels = token_data["labels"]
|
| 35 |
+
|
| 36 |
+
# Handle sequence rules
|
| 37 |
+
new_labels = []
|
| 38 |
+
for label_data in labels:
|
| 39 |
+
label = label_data['label']
|
| 40 |
+
if label.startswith("B-") and prev_entity_type == label[2:]:
|
| 41 |
+
new_labels.append({"label": f"I-{label[2:]}", "confidence": label_data["confidence"]})
|
| 42 |
+
elif label.startswith("I-") and prev_entity_type != label[2:]:
|
| 43 |
+
new_labels.append({"label": f"B-{label[2:]}", "confidence": label_data["confidence"]})
|
| 44 |
+
else:
|
| 45 |
+
new_labels.append(label_data)
|
| 46 |
+
prev_entity_type = label[2:]
|
| 47 |
+
token_data["labels"] = new_labels
|
| 48 |
+
return result
|
| 49 |
+
|
| 50 |
+
# Generate HTML matrix and JSON results with probabilities
|
| 51 |
+
def predict_ner_tags_with_json(sentence):
|
| 52 |
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
| 53 |
input_ids = inputs['input_ids'].to(model.device)
|
| 54 |
attention_mask = inputs['attention_mask'].to(model.device)
|
|
|
|
| 57 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 58 |
logits = outputs.logits
|
| 59 |
probabilities = torch.sigmoid(logits)
|
|
|
|
| 60 |
|
|
|
|
| 61 |
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
| 62 |
+
result = []
|
| 63 |
for i, token in enumerate(tokens):
|
| 64 |
if token not in tokenizer.all_special_tokens:
|
| 65 |
+
label_indices = (probabilities[0][i] > 0.52).nonzero(as_tuple=False).squeeze(-1)
|
| 66 |
+
labels = [
|
| 67 |
+
{
|
| 68 |
+
"label": id2label[idx.item()],
|
| 69 |
+
"confidence": round(probabilities[0][i][idx].item() * 100, 2)
|
| 70 |
+
}
|
| 71 |
+
for idx in label_indices
|
| 72 |
+
]
|
| 73 |
+
result.append({"token": token.replace("##", ""), "labels": labels})
|
| 74 |
+
|
| 75 |
+
result = post_process_entities(result)
|
| 76 |
+
|
| 77 |
+
# Create table rows
|
| 78 |
+
word_row = []
|
| 79 |
+
stereo_row = []
|
| 80 |
+
gen_row = []
|
| 81 |
+
unfair_row = []
|
| 82 |
+
|
| 83 |
+
for token_data in result:
|
| 84 |
+
token = token_data["token"]
|
| 85 |
+
labels = token_data["labels"]
|
| 86 |
+
|
| 87 |
+
word_row.append(f"<span style='font-weight:bold;'>{token}</span>")
|
| 88 |
+
|
| 89 |
+
# STEREO
|
| 90 |
+
stereo_labels = [
|
| 91 |
+
f"{label_data['label'][2:]} ({label_data['confidence']}%)" for label_data in labels if "STEREO" in label_data["label"]
|
| 92 |
+
]
|
| 93 |
+
stereo_row.append(
|
| 94 |
+
f"<span style='background:{label_colors['STEREO']}; border-radius:6px; padding:2px 5px;'>{', '.join(stereo_labels)}</span>"
|
| 95 |
+
if stereo_labels else " "
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# GEN
|
| 99 |
+
gen_labels = [
|
| 100 |
+
f"{label_data['label'][2:]} ({label_data['confidence']}%)" for label_data in labels if "GEN" in label_data["label"]
|
| 101 |
+
]
|
| 102 |
+
gen_row.append(
|
| 103 |
+
f"<span style='background:{label_colors['GEN']}; border-radius:6px; padding:2px 5px;'>{', '.join(gen_labels)}</span>"
|
| 104 |
+
if gen_labels else " "
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# UNFAIR
|
| 108 |
+
unfair_labels = [
|
| 109 |
+
f"{label_data['label'][2:]} ({label_data['confidence']}%)" for label_data in labels if "UNFAIR" in label_data["label"]
|
| 110 |
+
]
|
| 111 |
+
unfair_row.append(
|
| 112 |
+
f"<span style='background:{label_colors['UNFAIR']}; border-radius:6px; padding:2px 5px;'>{', '.join(unfair_labels)}</span>"
|
| 113 |
+
if unfair_labels else " "
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
matrix_html = f"""
|
| 117 |
+
<table style='border-collapse:collapse; width:100%; font-family:monospace; text-align:left;'>
|
| 118 |
+
<tr>
|
| 119 |
+
<td><strong>Text Sequence</strong></td>
|
| 120 |
+
{''.join(f"<td>{word}</td>" for word in word_row)}
|
| 121 |
+
</tr>
|
| 122 |
+
<tr>
|
| 123 |
+
<td><strong>Generalizations</strong></td>
|
| 124 |
+
{''.join(f"<td>{cell}</td>" for cell in gen_row)}
|
| 125 |
+
</tr>
|
| 126 |
+
<tr>
|
| 127 |
+
<td><strong>Unfairness</strong></td>
|
| 128 |
+
{''.join(f"<td>{cell}</td>" for cell in unfair_row)}
|
| 129 |
+
</tr>
|
| 130 |
+
<tr>
|
| 131 |
+
<td><strong>Stereotypes</strong></td>
|
| 132 |
+
{''.join(f"<td>{cell}</td>" for cell in stereo_row)}
|
| 133 |
+
</tr>
|
| 134 |
+
</table>
|
| 135 |
+
"""
|
| 136 |
+
|
| 137 |
+
# JSON string
|
| 138 |
+
json_result = json.dumps(result, indent=4)
|
| 139 |
+
|
| 140 |
+
return f"{matrix_html}<br><pre>{json_result}</pre>"
|
| 141 |
+
|
| 142 |
+
# Gradio Interface
|
| 143 |
+
iface = gr.Blocks()
|
| 144 |
+
|
| 145 |
+
with iface:
|
| 146 |
+
with gr.Row():
|
| 147 |
+
gr.Markdown(
|
| 148 |
+
"""
|
| 149 |
+
# GUS-Net 🕵
|
| 150 |
+
[GUS-Net](https://huggingface.co/ethical-spectacle/social-bias-ner) is a `BertForTokenClassification` based model, trained on the [GUS dataset](https://huggingface.co/datasets/ethical-spectacle/gus-dataset-v1). It preforms multi-label named-entity recognition of socially biased entities, intended to reveal the underlying structure of bias rather than a one-size fits all definition.
|
| 151 |
+
You can find the full collection of resources introduced in our paper [here](https://huggingface.co/collections/ethical-spectacle/gus-net-66edfe93801ea45d7a26a10f).
|
| 152 |
+
This [blog post](https://huggingface.co/blog/maximuspowers/bias-entity-recognition) walks through the training and architecture of the model.
|
| 153 |
+
Enter a sentence for named-entity recognition of biased entities:
|
| 154 |
+
- **Generalizations (GEN)**
|
| 155 |
+
- **Unfairness (UNFAIR)**
|
| 156 |
+
- **Stereotypes (STEREO)**
|
| 157 |
+
Labels follow the BIO format. Try it out:
|
| 158 |
+
"""
|
| 159 |
+
)
|
| 160 |
+
with gr.Row():
|
| 161 |
+
input_box = gr.Textbox(label="Input Sentence")
|
| 162 |
+
with gr.Row():
|
| 163 |
+
output_box = gr.HTML(label="Entity Matrix and JSON Output")
|
| 164 |
+
|
| 165 |
+
input_box.change(predict_ner_tags_with_json, inputs=[input_box], outputs=[output_box])
|
| 166 |
+
|
| 167 |
+
iface.launch(share=True)
|