Spaces:
Runtime error
Runtime error
[debug] zeroGPU
Browse files
app.py
CHANGED
|
@@ -7,8 +7,8 @@ This creates a web interface to compare three inference modes simultaneously:
|
|
| 7 |
3. C2C: Rosetta model with projectors
|
| 8 |
|
| 9 |
ZeroGPU Support:
|
| 10 |
-
- Models are loaded to
|
| 11 |
-
- @spaces.GPU decorator
|
| 12 |
- Works seamlessly on both ZeroGPU and regular GPU environments
|
| 13 |
"""
|
| 14 |
|
|
@@ -221,9 +221,9 @@ class ModelManager:
|
|
| 221 |
@spaces.GPU(duration=60)
|
| 222 |
def generate_single(self, user_input: str) -> Generator[str, None, None]:
|
| 223 |
"""Generate response from single model with streaming."""
|
| 224 |
-
#
|
| 225 |
-
device = torch.device("cuda" if torch.cuda.is_available() else
|
| 226 |
-
if ZEROGPU_AVAILABLE
|
| 227 |
self.single_model.to(device)
|
| 228 |
|
| 229 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
|
@@ -252,23 +252,23 @@ class ModelManager:
|
|
| 252 |
thread.start()
|
| 253 |
|
| 254 |
# Stream tokens
|
| 255 |
-
generated_text = ""
|
| 256 |
for token in streamer:
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
@spaces.GPU(duration=90)
|
| 261 |
def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]:
|
| 262 |
"""Generate response from T2T model with streaming (returns context, answer)."""
|
| 263 |
-
#
|
| 264 |
-
device = torch.device("cuda" if torch.cuda.is_available() else
|
| 265 |
if ZEROGPU_AVAILABLE:
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
if self.t2t_model.answer_model.device.type != "cuda":
|
| 269 |
-
self.t2t_model.answer_model.to(device)
|
| 270 |
|
| 271 |
-
|
| 272 |
# Stage 1: Context generation
|
| 273 |
context_streamer = TextIteratorStreamer(
|
| 274 |
self.t2t_model.context_tokenizer,
|
|
@@ -349,13 +349,18 @@ class ModelManager:
|
|
| 349 |
for token in answer_streamer:
|
| 350 |
answer_text += token
|
| 351 |
yield context_text, answer_text
|
| 352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
@spaces.GPU(duration=60)
|
| 354 |
def generate_c2c(self, user_input: str) -> Generator[str, None, None]:
|
| 355 |
"""Generate response from C2C model with streaming."""
|
| 356 |
-
#
|
| 357 |
-
device = torch.device("cuda" if torch.cuda.is_available() else
|
| 358 |
-
if ZEROGPU_AVAILABLE
|
| 359 |
self.c2c_model.to(device)
|
| 360 |
|
| 361 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
|
@@ -397,10 +402,12 @@ class ModelManager:
|
|
| 397 |
thread.start()
|
| 398 |
|
| 399 |
# Stream tokens
|
| 400 |
-
generated_text = ""
|
| 401 |
for token in streamer:
|
| 402 |
-
|
| 403 |
-
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
|
| 406 |
def create_demo(model_manager: ModelManager):
|
|
|
|
| 7 |
3. C2C: Rosetta model with projectors
|
| 8 |
|
| 9 |
ZeroGPU Support:
|
| 10 |
+
- Models are loaded to CUDA at startup
|
| 11 |
+
- @spaces.GPU decorator handles GPU allocation automatically for each inference
|
| 12 |
- Works seamlessly on both ZeroGPU and regular GPU environments
|
| 13 |
"""
|
| 14 |
|
|
|
|
| 221 |
@spaces.GPU(duration=60)
|
| 222 |
def generate_single(self, user_input: str) -> Generator[str, None, None]:
|
| 223 |
"""Generate response from single model with streaming."""
|
| 224 |
+
# For ZeroGPU, move model to GPU on-demand
|
| 225 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 226 |
+
if ZEROGPU_AVAILABLE:
|
| 227 |
self.single_model.to(device)
|
| 228 |
|
| 229 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
|
|
|
| 252 |
thread.start()
|
| 253 |
|
| 254 |
# Stream tokens
|
|
|
|
| 255 |
for token in streamer:
|
| 256 |
+
yield token
|
| 257 |
+
thread.join()
|
| 258 |
+
|
| 259 |
+
if ZEROGPU_AVAILABLE:
|
| 260 |
+
self.single_model.to("cpu")
|
| 261 |
+
|
| 262 |
+
|
| 263 |
@spaces.GPU(duration=90)
|
| 264 |
def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]:
|
| 265 |
"""Generate response from T2T model with streaming (returns context, answer)."""
|
| 266 |
+
# For ZeroGPU, move model to GPU on-demand
|
| 267 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 268 |
if ZEROGPU_AVAILABLE:
|
| 269 |
+
self.t2t_model.context_model.to(device)
|
| 270 |
+
self.t2t_model.answer_model.to(device)
|
|
|
|
|
|
|
| 271 |
|
|
|
|
| 272 |
# Stage 1: Context generation
|
| 273 |
context_streamer = TextIteratorStreamer(
|
| 274 |
self.t2t_model.context_tokenizer,
|
|
|
|
| 349 |
for token in answer_streamer:
|
| 350 |
answer_text += token
|
| 351 |
yield context_text, answer_text
|
| 352 |
+
thread.join()
|
| 353 |
+
|
| 354 |
+
if ZEROGPU_AVAILABLE:
|
| 355 |
+
self.t2t_model.context_model.to("cpu")
|
| 356 |
+
self.t2t_model.answer_model.to("cpu")
|
| 357 |
+
|
| 358 |
@spaces.GPU(duration=60)
|
| 359 |
def generate_c2c(self, user_input: str) -> Generator[str, None, None]:
|
| 360 |
"""Generate response from C2C model with streaming."""
|
| 361 |
+
# For ZeroGPU, move model to GPU on-demand
|
| 362 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 363 |
+
if ZEROGPU_AVAILABLE:
|
| 364 |
self.c2c_model.to(device)
|
| 365 |
|
| 366 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
|
|
|
| 402 |
thread.start()
|
| 403 |
|
| 404 |
# Stream tokens
|
|
|
|
| 405 |
for token in streamer:
|
| 406 |
+
yield token
|
| 407 |
+
thread.join()
|
| 408 |
+
|
| 409 |
+
if ZEROGPU_AVAILABLE:
|
| 410 |
+
self.c2c_model.to("cpu")
|
| 411 |
|
| 412 |
|
| 413 |
def create_demo(model_manager: ModelManager):
|