Spaces:
Runtime error
Runtime error
| # Plug&Play Feature Injection | |
| import torch | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| from random import randrange | |
| import PIL | |
| import numpy as np | |
| from tqdm import tqdm | |
| from torch.cuda.amp import custom_bwd, custom_fwd | |
| import torch.nn.functional as F | |
| from diffusers import ( | |
| StableDiffusionXLPipeline, | |
| StableDiffusionXLImg2ImgPipeline, | |
| DDIMScheduler, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( | |
| rescale_noise_cfg, | |
| StableDiffusionXLPipelineOutput, | |
| retrieve_timesteps, | |
| PipelineImageInput | |
| ) | |
| from src.eunms import Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type | |
| from src.inversion_utils import noise_regularization | |
| def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt): | |
| """ | |
| let a = alpha_t, b = alpha_{t - 1} | |
| We have a > b, | |
| x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1}) | |
| From https://arxiv.org/pdf/2105.05233.pdf, section F. | |
| """ | |
| a, b = alpha_t, alpha_tm1 | |
| sa = a**0.5 | |
| sb = b**0.5 | |
| return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt) | |
| class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline): | |
| # @torch.no_grad() | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: PipelineImageInput = None, | |
| strength: float = 0.3, | |
| num_inversion_steps: int = 50, | |
| timesteps: List[int] = None, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 1.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Tuple[int, int] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Tuple[int, int] = None, | |
| negative_original_size: Optional[Tuple[int, int]] = None, | |
| negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_target_size: Optional[Tuple[int, int]] = None, | |
| aesthetic_score: float = 6.0, | |
| negative_aesthetic_score: float = 2.5, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| opt_lr: float = 0.001, | |
| opt_iters: int = 1, | |
| opt_none_inference_steps: bool = False, | |
| opt_loss_kl_lambda: float = 10.0, | |
| num_inference_steps: int = 50, | |
| num_aprox_steps: int = 100, | |
| **kwargs, | |
| ): | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| strength, | |
| num_inversion_steps, | |
| callback_steps, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| denoising_start_fr = 1.0 - denoising_start | |
| denoising_start = 0.0 if self.cfg.noise_friendly_inversion else denoising_start | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._denoising_end = denoising_end | |
| self._denoising_start = denoising_start | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # 4. Preprocess image | |
| image = self.image_processor.preprocess(image) | |
| # 5. Prepare timesteps | |
| def denoising_value_valid(dnv): | |
| return isinstance(self.denoising_end, float) and 0 < dnv < 1 | |
| timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps) | |
| timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference, num_inference_steps, device, None) | |
| timesteps, num_inversion_steps = self.get_timesteps( | |
| num_inversion_steps, | |
| strength, | |
| device, | |
| denoising_start=self.denoising_start if denoising_value_valid else None, | |
| ) | |
| # latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # add_noise = True if self.denoising_start is None else False | |
| # 6. Prepare latent variables | |
| with torch.no_grad(): | |
| latents = self.prepare_latents( | |
| image, | |
| None, | |
| batch_size, | |
| num_images_per_prompt, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| False, | |
| ) | |
| # 7. Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| height, width = latents.shape[-2:] | |
| height = height * self.vae_scale_factor | |
| width = width * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 8. Prepare added time ids & embeddings | |
| if negative_original_size is None: | |
| negative_original_size = original_size | |
| if negative_target_size is None: | |
| negative_target_size = target_size | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids, add_neg_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device) | |
| if ip_adapter_image is not None: | |
| image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) | |
| if self.do_classifier_free_guidance: | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
| image_embeds = image_embeds.to(device) | |
| # 9. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0) | |
| prev_timestep = None | |
| self._num_timesteps = len(timesteps) | |
| self.prev_z = torch.clone(latents) | |
| self.prev_z4 = torch.clone(latents) | |
| self.z_0 = torch.clone(latents) | |
| g_cpu = torch.Generator().manual_seed(7865) | |
| self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype) | |
| # Friendly inversion params | |
| timesteps_for = timesteps if self.cfg.noise_friendly_inversion else reversed(timesteps) | |
| noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype) | |
| latents = self.scheduler.add_noise(self.z_0, noise, timesteps_for[0].view((1))).detach() if self.cfg.noise_friendly_inversion else latents | |
| z_T = latents.clone() | |
| all_latents = [latents.clone()] | |
| with self.progress_bar(total=num_inversion_steps) as progress_bar: | |
| for i, t in enumerate(timesteps_for): | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| if ip_adapter_image is not None: | |
| added_cond_kwargs["image_embeds"] = image_embeds | |
| z_tp1 = self.inversion_step(latents, | |
| t, | |
| prompt_embeds, | |
| added_cond_kwargs, | |
| prev_timestep=prev_timestep, | |
| num_aprox_steps=num_aprox_steps) | |
| prev_timestep = t | |
| latents = z_tp1 | |
| all_latents.append(latents.clone()) | |
| if self.cfg.noise_friendly_inversion and t.item() > 1000 * denoising_start_fr: | |
| z_T = latents.clone() | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
| negative_pooled_prompt_embeds = callback_outputs.pop( | |
| "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
| ) | |
| add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
| add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if self.cfg.noise_friendly_inversion: | |
| latents = z_T | |
| image = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return StableDiffusionXLPipelineOutput(images=image), all_latents | |
| # @torch.no_grad() | |
| def inversion_step( | |
| self, | |
| z_t: torch.tensor, | |
| t: torch.tensor, | |
| prompt_embeds, | |
| added_cond_kwargs, | |
| prev_timestep: Optional[torch.tensor] = None, | |
| num_aprox_steps: int = 100 | |
| ) -> torch.tensor: | |
| extra_step_kwargs = {} | |
| avg_range = self.cfg.gradient_averaging_first_step_range if t.item() < 250 else self.cfg.gradient_averaging_step_range | |
| num_aprox_steps = min(self.cfg.max_num_aprox_steps_first_step, num_aprox_steps) if t.item() < 250 else num_aprox_steps | |
| nosie_pred_avg = None | |
| z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach() | |
| noise_pred_optimal = None | |
| approximated_z_tp1 = z_t.clone() | |
| for i in range(num_aprox_steps + 1): | |
| with torch.no_grad(): | |
| if self.cfg.num_reg_steps > 0 and i == 0: | |
| approximated_z_tp1 = torch.cat([z_tp1_forward, approximated_z_tp1]) | |
| prompt_embeds_in = torch.cat([prompt_embeds, prompt_embeds]) | |
| added_cond_kwargs_in = {} | |
| added_cond_kwargs_in['text_embeds'] = torch.cat([added_cond_kwargs['text_embeds'], added_cond_kwargs['text_embeds']]) | |
| added_cond_kwargs_in['time_ids'] = torch.cat([added_cond_kwargs['time_ids'], added_cond_kwargs['time_ids']]) | |
| else: | |
| prompt_embeds_in = prompt_embeds | |
| added_cond_kwargs_in = added_cond_kwargs | |
| noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds_in, added_cond_kwargs_in) | |
| if self.cfg.num_reg_steps > 0 and i == 0: | |
| noise_pred_optimal, noise_pred = noise_pred.chunk(2) | |
| noise_pred_optimal = noise_pred_optimal.detach() | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # Calculate average noise | |
| if i >= avg_range[0] and i < avg_range[1]: | |
| j = i - avg_range[0] | |
| if nosie_pred_avg is None: | |
| nosie_pred_avg = noise_pred.clone() | |
| else: | |
| nosie_pred_avg = j * nosie_pred_avg / (j + 1) + noise_pred / (j + 1) | |
| if i >= avg_range[0] or (self.cfg.gradient_averaging_type == Gradient_Averaging_Type.NONE and i > 0): | |
| noise_pred = noise_regularization(noise_pred, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls) | |
| approximated_z_tp1 = self.backward_step(noise_pred, t, z_t, prev_timestep) | |
| if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.ON_END and nosie_pred_avg is not None: | |
| nosie_pred_avg = noise_regularization(nosie_pred_avg, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls) | |
| approximated_z_tp1 = self.backward_step(nosie_pred_avg, t, z_t, prev_timestep) | |
| if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE: | |
| noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds, added_cond_kwargs) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| self.scheduler.step_and_update_noise(noise_pred, t, approximated_z_tp1, z_t, return_dict=False, update_epsilon_type=self.cfg.update_epsilon_type) | |
| return approximated_z_tp1 | |
| def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs): | |
| latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| return self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=None, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| def backward_step(self, nosie_pred, t, z_t, prev_timestep): | |
| extra_step_kwargs = {} | |
| if self.cfg.scheduler_type == Scheduler_Type.EULER or self.cfg.scheduler_type == Scheduler_Type.LCM: | |
| return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach() | |
| else: | |
| alpha_prod_t = self.scheduler.alphas_cumprod[t] | |
| alpha_prod_t_prev = ( | |
| self.scheduler.alphas_cumprod[prev_timestep] | |
| if prev_timestep is not None | |
| else self.scheduler.final_alpha_cumprod | |
| ) | |
| return _backward_ddim( | |
| x_tm1=z_t, | |
| alpha_t=alpha_prod_t, | |
| alpha_tm1=alpha_prod_t_prev, | |
| eps_xt=nosie_pred, | |
| ) | |