|
|
import spaces |
|
|
import gradio as gr |
|
|
import torch |
|
|
from PIL import Image |
|
|
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline |
|
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
from diffusers import AuraFlowPipeline |
|
|
import re |
|
|
import random |
|
|
import numpy as np |
|
|
|
|
|
import subprocess |
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
dtype = torch.float16 |
|
|
|
|
|
|
|
|
pipe = AuraFlowPipeline.from_pretrained( |
|
|
"fal/AuraFlow-v0.3", |
|
|
torch_dtype=torch.float16 |
|
|
).to(device) |
|
|
|
|
|
|
|
|
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval() |
|
|
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2") |
|
|
|
|
|
|
|
|
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() |
|
|
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) |
|
|
|
|
|
|
|
|
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-fal-prompt-enchance", device=device) |
|
|
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
|
|
|
def florence_caption(image): |
|
|
|
|
|
if not isinstance(image, Image.Image): |
|
|
image = Image.fromarray(image) |
|
|
|
|
|
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) |
|
|
generated_ids = florence_model.generate( |
|
|
input_ids=inputs["input_ids"], |
|
|
pixel_values=inputs["pixel_values"], |
|
|
max_new_tokens=1024, |
|
|
early_stopping=False, |
|
|
do_sample=False, |
|
|
num_beams=3, |
|
|
) |
|
|
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
|
parsed_answer = florence_processor.post_process_generation( |
|
|
generated_text, |
|
|
task="<MORE_DETAILED_CAPTION>", |
|
|
image_size=(image.width, image.height) |
|
|
) |
|
|
return parsed_answer["<MORE_DETAILED_CAPTION>"] |
|
|
|
|
|
|
|
|
def create_captions_rich(image): |
|
|
prompt = "caption en" |
|
|
model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device) |
|
|
input_len = model_inputs["input_ids"].shape[-1] |
|
|
|
|
|
with torch.inference_mode(): |
|
|
generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False) |
|
|
generation = generation[0][input_len:] |
|
|
decoded = vlm_processor.decode(generation, skip_special_tokens=True) |
|
|
|
|
|
return modify_caption(decoded) |
|
|
|
|
|
|
|
|
def modify_caption(caption: str) -> str: |
|
|
prefix_substrings = [ |
|
|
('captured from ', ''), |
|
|
('captured at ', '') |
|
|
] |
|
|
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) |
|
|
replacers = {opening: replacer for opening, replacer in prefix_substrings} |
|
|
|
|
|
def replace_fn(match): |
|
|
return replacers[match.group(0)] |
|
|
|
|
|
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
def enhance_prompt(input_prompt, model_choice): |
|
|
if model_choice == "Medium": |
|
|
result = enhancer_medium("Enhance the description: " + input_prompt) |
|
|
enhanced_text = result[0]['summary_text'] |
|
|
|
|
|
else: |
|
|
result = enhancer_long("Enhance the description: " + input_prompt) |
|
|
enhanced_text = result[0]['summary_text'] |
|
|
|
|
|
return enhanced_text |
|
|
|
|
|
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
image = pipe( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
guidance_scale=guidance_scale, |
|
|
num_inference_steps=num_inference_steps, |
|
|
width=width, |
|
|
height=height, |
|
|
generator=generator |
|
|
).images[0] |
|
|
|
|
|
return image, seed |
|
|
|
|
|
@spaces.GPU(duration=100) |
|
|
def process_workflow(image, text_prompt, vlm_model_choice, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
|
if image is not None: |
|
|
|
|
|
if not isinstance(image, Image.Image): |
|
|
image = Image.fromarray(image) |
|
|
|
|
|
if vlm_model_choice == "Long Captioner": |
|
|
prompt = create_captions_rich(image) |
|
|
else: |
|
|
prompt = florence_caption(image) |
|
|
else: |
|
|
prompt = text_prompt |
|
|
|
|
|
if use_enhancer: |
|
|
prompt = enhance_prompt(prompt, model_choice) |
|
|
|
|
|
generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps) |
|
|
|
|
|
return generated_image, prompt, used_seed |
|
|
|
|
|
custom_css = """ |
|
|
.input-group, .output-group { |
|
|
border: 1px solid #e0e0e0; |
|
|
border-radius: 10px; |
|
|
padding: 20px; |
|
|
margin-bottom: 20px; |
|
|
background-color: #f9f9f9; |
|
|
} |
|
|
.submit-btn { |
|
|
background-color: #2980b9 !important; |
|
|
color: white !important; |
|
|
} |
|
|
.submit-btn:hover { |
|
|
background-color: #3498db !important; |
|
|
} |
|
|
""" |
|
|
|
|
|
title = """<h1 align="center">AuraFlow with VLM Captioner and Prompt Enhancer</h1> |
|
|
<p><center> |
|
|
<a href="https://huggingface.co/fal/AuraFlow" target="_blank">[AuraFlow Model]</a> |
|
|
<a href="https://huggingface.co/spaces/multimodalart/AuraFlow" target="_blank">[Original Space]</a> |
|
|
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a> |
|
|
<a href="https://huggingface.co/gokaygokay/sd3-long-captioner-v2" target="_blank">[Long Captioner Model]</a> |
|
|
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a> |
|
|
<a href="https://huggingface.co/gokaygokay/Lamini-fal-prompt-enchance" target="_blank">[Prompt Enhancer Medium]</a> |
|
|
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p> |
|
|
</center></p> |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo: |
|
|
gr.HTML(title) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
with gr.Group(elem_classes="input-group"): |
|
|
input_image = gr.Image(label="Input Image (VLM Captioner)") |
|
|
vlm_model_choice = gr.Radio(["Florence-2", "Long Captioner"], label="VLM Model", value="Florence-2") |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)") |
|
|
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False) |
|
|
model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Medium") |
|
|
negative_prompt = gr.Textbox(label="Negative Prompt") |
|
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
|
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) |
|
|
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) |
|
|
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0) |
|
|
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28) |
|
|
|
|
|
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
with gr.Group(elem_classes="output-group"): |
|
|
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False) |
|
|
final_prompt = gr.Textbox(label="Final Prompt Used") |
|
|
used_seed = gr.Number(label="Seed Used") |
|
|
|
|
|
generate_btn.click( |
|
|
fn=process_workflow, |
|
|
inputs=[ |
|
|
input_image, text_prompt, vlm_model_choice, use_enhancer, model_choice, |
|
|
negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps |
|
|
], |
|
|
outputs=[output_image, final_prompt, used_seed] |
|
|
) |
|
|
|
|
|
demo.launch(debug=True) |