File size: 28,766 Bytes
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f799c0
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f799c0
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f799c0
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f799c0
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f799c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24cbe0b
3d15423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# ruff: noqa: E501, INP001, FBT001

from __future__ import annotations

from typing import Dict, List, Tuple

import gradio as gr
import torch
from optimum.onnxruntime import ORTModelForTokenClassification
from transformers import AutoTokenizer

# Hugging Face model
MODEL_NAME = "gravitee-io/bert-small-pii-detection"

def load_model() -> Tuple[ORTModelForTokenClassification, AutoTokenizer]:
    """Load BERT ONNX model and tokenizer from Hugging Face"""
    import os

    try:
        # Load tokenizer from Hugging Face
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_NAME,
            token=os.getenv("HUGGINGFACE_TOKEN")
        )

        # Try to load quantized model first, fallback to regular model
        try:
            model = ORTModelForTokenClassification.from_pretrained(
                MODEL_NAME,
                file_name="model.quant.onnx",
                token=os.getenv("HUGGINGFACE_TOKEN")
            )
        except:
            model = ORTModelForTokenClassification.from_pretrained(
                MODEL_NAME,
                file_name="model.onnx",
                token=os.getenv("HUGGINGFACE_TOKEN")
            )

        return model, tokenizer
    except Exception as e:
        raise ValueError(f"Could not load model {MODEL_NAME}: {e}")

def convert_predictions_to_spans(predictions: List[int], offset_mapping: List[Tuple[int, int]], id2label: Dict[int, str], text: str) -> List[Dict]:
    """Convert token-level predictions to entity spans using BIO tagging"""
    spans = []
    current_entity = None

    for i, (pred, (start, end)) in enumerate(zip(predictions, offset_mapping)):
        if start == end == 0:  # Skip special tokens
            continue

        label = id2label[pred]

        if label.startswith("B-"):
            # Begin new entity
            if current_entity:
                spans.append(current_entity)
            current_entity = {
                "start": start,
                "end": end,
                "label": label[2:].lower(),
                "text": text[start:end]
            }
        elif label.startswith("I-") and current_entity and label[2:].lower() == current_entity["label"]:
            # Continue current entity
            current_entity["end"] = end
            current_entity["text"] = text[current_entity["start"]:end]
        elif label == "O":
            # Outside any entity
            if current_entity:
                spans.append(current_entity)
                current_entity = None

    # Don't forget the last entity
    if current_entity:
        spans.append(current_entity)

    return spans

# Load model during initialization
print("Loading model from Hugging Face...")
_model, _tokenizer = load_model()
print(f"Model {MODEL_NAME} loaded successfully!")

def get_model_info():
    """Get model and tokenizer (already loaded)"""
    return _model, _tokenizer

def predict_entities(text: str, threshold: float) -> Dict:
    """Predict entities using BERT ONNX model"""
    try:
        model, tokenizer = get_model_info()

        # Tokenize input text
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True,
                          return_offsets_mapping=True, max_length=512)

        offset_mapping = inputs.pop("offset_mapping")[0].tolist()

        # Run inference
        with torch.no_grad():
            outputs = model(**inputs)
            predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
            predicted_class_ids = torch.argmax(predictions, dim=-1)[0].tolist()
            prediction_scores = torch.max(predictions, dim=-1)[0][0].tolist()

        # Filter by threshold
        filtered_predictions = []
        filtered_offsets = []
        for pred, score, offset in zip(predicted_class_ids, prediction_scores, offset_mapping):
            if score >= threshold:
                filtered_predictions.append(pred)
                filtered_offsets.append(offset)
            else:
                filtered_predictions.append(0)  # O tag
                filtered_offsets.append(offset)

        # Convert to spans
        id2label = model.config.id2label
        spans = convert_predictions_to_spans(filtered_predictions, filtered_offsets, id2label, text)

        # Convert to gradio format
        entities = []
        for span in spans:
            entities.append({
                "entity": span["label"],
                "word": span["text"],
                "start": span["start"],
                "end": span["end"],
                "score": 1.0  # We already filtered by threshold
            })

        return {
            "text": text,
            "entities": entities
        }

    except Exception as e:
        return {
            "text": text,
            "entities": [],
            "error": str(e)
        }

def format_text(text: str, format_type: str) -> str:
    """Format text with proper spacing and indentation"""
    if format_type == "None":
        return text
    elif format_type == "JSON":
        try:
            import json
            # Try to parse and format as JSON
            parsed = json.loads(text)
            return json.dumps(parsed, indent=2)
        except:
            return text
    elif format_type == "XML":
        try:
            import xml.etree.ElementTree as ET
            from xml.dom import minidom

            # Remove b' prefix if present
            clean_text = text
            if text.startswith("b'") and text.endswith("'"):
                clean_text = text[2:-1]

            # Parse and format XML
            root = ET.fromstring(clean_text)
            rough_string = ET.tostring(root, 'unicode')
            reparsed = minidom.parseString(rough_string)
            return reparsed.toprettyxml(indent="  ")
        except:
            return text
    elif format_type == "HTML":
        try:
            from bs4 import BeautifulSoup
            soup = BeautifulSoup(text, 'html.parser')
            return soup.prettify()
        except:
            # Fallback: simple HTML formatting
            formatted = text.replace('><', '>\n<')
            formatted = formatted.replace('<tr>', '\n  <tr>')
            formatted = formatted.replace('<td>', '\n    <td>')
            formatted = formatted.replace('<th>', '\n    <th>')
            return formatted
    elif format_type == "SQL":
        # Simple SQL formatting
        formatted = text.upper()
        formatted = formatted.replace(' FROM ', '\nFROM ')
        formatted = formatted.replace(' WHERE ', '\nWHERE ')
        formatted = formatted.replace(' AND ', '\n  AND ')
        formatted = formatted.replace(' OR ', '\n  OR ')
        formatted = formatted.replace(' ORDER BY ', '\nORDER BY ')
        formatted = formatted.replace(' GROUP BY ', '\nGROUP BY ')
        formatted = formatted.replace(' HAVING ', '\nHAVING ')
        formatted = formatted.replace(' LIMIT ', '\nLIMIT ')
        return formatted
    else:
        return text

def ner(text: str, threshold: float, data_type: str = None, format_input: bool = False) -> List[Tuple[str, str]]:
    """Main NER function for Gradio interface"""
    # Format text if requested
    if format_input and data_type and data_type != "Documents":
        formatted_text = format_text(text, data_type)
        result = predict_entities(formatted_text, threshold)
        display_text = formatted_text
    else:
        result = predict_entities(text, threshold)
        display_text = text

    if "error" in result:
        return [(display_text, None)]

    # Convert to highlighted text format
    highlighted = []
    last_end = 0

    for entity in sorted(result["entities"], key=lambda x: x["start"]):
        # Add text before entity
        if entity["start"] > last_end:
            highlighted.append((display_text[last_end:entity["start"]], None))

        # Add entity
        highlighted.append((entity["word"], entity["entity"].upper()))
        last_end = entity["end"]

    # Add remaining text
    if last_end < len(display_text):
        highlighted.append((display_text[last_end:], None))

    return highlighted

examples = [
    # JSON samples
    [
        '{\"api_key\": \"9ewl5\", \"page\": \"82\", \"max_primary_general_date\": \"1998-02-01\", \"sort\": \"nz siw\", \"election_type_id\": \"guerv jgwbunon guerv\", \"election_district\": \"03vpuute\", \"max_election_date\": \"1980-12-30\", \"sort_null_only\": \"false\", \"min_election_date\": \"2003-03-05\", \"per_page\": \"96\", \"min_primary_general_date\": \"1991-05-29\", \"election_state\": \"f9u4gfgt pzji\", \"election_party\": \"\", \"min_update_date\": \"1998-01-26\", \"sort_nulls_last\": \"false\", \"max_create_date\": \"1970-10-19\", \"office_sought\": \"rz1thr5zp\", \"max_update_date\": \"2018-12-12\", \"sort_hide_null\": \"true\", \"election_year\": \"alrcfqpswf\", \"min_create_date\": \"2003-02-18\"}',
        0.35,
        "JSON"
    ],
    [
        '{\"sort\": \"\", \"incumbent_challenge\": \"rQ a\", \"longitude\": \"-98.705515\", \"has_raised_funds\": \"True\", \"airport\": \"New Orleans International airport\", \"office\": \"\", \"candidate_status\": \"e\", \"district\": \"\", \"sort_nulls_last\": \"True\", \"per_page\": \"344387016\", \"state\": \"Texas\", \"location\": \"-89.030682\", \"airport_icao\": \"KOKC\", \"api_key\": \"\", \"origin airport code\": \"LIS\", \"year\": \"2012\", \"sort_hide_null\": \"False\", \"cycle\": \"VAnEFSGu LDiJQtw LDiJQtw\", \"lat\": \"33.182925\", \"sort_null_only\": \"False\", \"page\": \"5661254\", \"election_year\": \"\", \"federal_funds_flag\": \"False\", \"party\": \"\", \"name\": \"OSsUo\"}',
        0.35,
        "JSON"
    ],
    [
        '{\"nationality\": \"American\", \"keyStorePass\": \"LObizj\", \":operation\": \"XSnpUioywM iOF5gN1bHM\", \"currentPassword\": \"wo3vooch8Ie\", \"nation_plural\": \"north-americans\", \"alias\": \"aoJPk aoJPk\", \"prefix\": \"Mr.\", \"prefix_male\": \"Mr.\", \"newAlias\": \"\", \"nation_woman\": \"western samoan\", \"newPassword\": \"UVpvCQ UVpvCQ\", \"keyPassword\": \"k4GWWlP@@z\", \"nation_man\": \"bahraini\", \"rePassword\": \"\", \"removeAlias\": \"o\"}',
        0.35,
        "JSON"
    ],
    [
        '{\"imei\": \"27-051998-738345-4\", \"post-code\": \"28403\", \"startTime\": \"1996-04-20 02:21:52\", \"timeGrain\": \"0f8Jl9qmZ3 cJSVXOylw\", \"longitude\": \"-77.952502\", \"latitude\": \"34.258789\", \"endTime\": \"1994-08-17 13:38:00\", \"api-version\": \"HDjWC jcOLlPG8W\", \"key store password\": \"ahZeT2ee\", \"bank account\": \"KEKY41344355014443\"}',
        0.35,
        "JSON"
    ],
    # SQL samples
    [
        'SELECT \"endTime,startTime,age,nation_woman,national identity,arline name,airport_icao,coordinate,api-version\",\"api-version\",CASE WHEN \"endTime\" THEN \'skin\' WHEN \"startTime\"=\'1992-01-13 23:33:10\' THEN \'president\' WHEN \"age\"=\'31\' THEN \'be\' WHEN \"nation_woman\"=\'syrian\' THEN \'particular\' WHEN \"national identity\"<>\'600233955\' THEN \'trip\' WHEN \"arline name\"<>\'Shanghai Airlines\' THEN \'present\' WHEN \"airport_icao\"<>\'SBJP\' THEN \'forget\' WHEN \"coordinate\"=\'52.297060\' THEN \'car\' WHEN \"api-version\" THEN \'also\' END FROM \"not\" WHERE \"endTime\" AND \"startTime\"=\'1973-12-27 11:08:01\' AND (\"age\"=\'64\' OR \"age\"=\'answer\') AND \"nation_woman\"<>\'guyanese\' AND \"national identity\"<>\'142451774\' AND \"arline name\" AND \"airport_icao\" AND \"coordinate\"=\'46.828790\' AND (\"api-version\"=\'KOikhS KOikhS yz\' OR \"api-version\"=\'activity\') LIMIT 64',
        0.35,
        "SQL"
    ],
    [
        'SELECT \"week__day,Version,Tags,age,currency_code,TargetBucket,expiration-date,TargetSnapshotName,swift-code,KmsKeyId,Action,debit card,SourceSnapshotName\",\"SourceSnapshotName\",CASE WHEN \"week__day\"=\'Saturday\' THEN \'serious\' WHEN \"Version\"=\'2015-02-02\' OR \"Version\"=\'staff\' THEN \'country\' WHEN \"Tags\"<>\'\' THEN \'water\' WHEN \"age\" THEN \'behind\' WHEN \"currency_code\"=\'CAD\' THEN \'position\' WHEN \"TargetBucket\" THEN \'next\' WHEN \"expiration-date\"=\'11/2023\' OR \"expiration-date\"=\'technology\' THEN \'kid\' WHEN \"TargetSnapshotName\"=\'pWJ\' OR \"TargetSnapshotName\"=\'give\' THEN \'child\' WHEN \"swift-code\"=\'GWIZGBQPBUW\' THEN \'poor\' WHEN \"KmsKeyId\" THEN \'meeting\' WHEN \"Action\"=\'CopySnapshot\' THEN \'collection\' WHEN \"debit card\"<>\'30381983513092\' THEN \'paper\' WHEN \"SourceSnapshotName\"=\'\' THEN \'keep\' END FROM \"statement\" WHERE \"week__day\"=\'Tuesday\' AND \"Version\"=\'2015-02-02\' AND \"Tags\"=\'\' AND \"age\"=\'20\' AND \"currency_code\"=\'MGA\' AND \"TargetBucket\"=\'\' AND \"expiration-date\"=\'02/24\' AND \"TargetSnapshotName\"=\'\' AND \"swift-code\"=\'GNCHGBZC\' AND \"KmsKeyId\"=\'\' AND \"Action\"=\'CopySnapshot\' AND \"debit card\"=\'4534384187682\' AND \"SourceSnapshotName\"=\'\' LIMIT 36',
        0.35,
        "SQL"
    ],
    [
        'SELECT \"expiration-date,prettyPrint,alt,master-card,arline__name,key,bank city,fields,building,quotaUser,userIp,to country code,oauth_token\",\"oauth_token\",CASE WHEN \"expiration-date\"=\'3/2024\' THEN \'reduce\' WHEN \"prettyPrint\"=\'False\' OR \"prettyPrint\"=\'south\' THEN \'within\' WHEN \"alt\"<>\'json\' THEN \'thing\' WHEN \"master-card\" THEN \'strategy\' WHEN \"arline__name\"=\'Air India\' THEN \'forward\' WHEN \"key\" THEN \'artist\' WHEN \"bank city\"=\'Helena\' OR \"bank city\"=\'more\' THEN \'pay\' WHEN \"fields\"=\'\' OR \"fields\"=\'thing\' THEN \'rest\' WHEN \"building\"=\'977\' THEN \'executive\' WHEN \"quotaUser\" THEN \'safe\' WHEN \"userIp\"=\'pWJ\' THEN \'whom\' WHEN \"to country code\"<>\'US\' THEN \'not\' WHEN \"oauth_token\"=\'\' THEN \'choice\' END FROM \"wrong\" WHERE (\"expiration-date\"=\'05/23\' OR \"expiration-date\"=\'language\') AND \"prettyPrint\"=\'True\' AND \"alt\"<>\'json\' AND \"master-card\"=\'349245482859346\' AND \"arline__name\"=\'Indonesia AirAsia\' AND \"key\"=\'\' AND \"bank city\"=\'Georgetown\' AND \"fields\"=\'\' AND \"building\"=\'7241\' AND \"quotaUser\"=\'\' AND \"userIp\"=\'\' AND \"to country code\"=\'TM\' AND \"oauth_token\"=\'\' LIMIT 64',
        0.35,
        "SQL"
    ],
    [
        'SELECT `schemaName,databaseName,city,building,coordinate,state_abbreviation,driver license,international__mobile__equipment__identity`,`international__mobile__equipment__identity`,CASE WHEN `schemaName`<>\'fX04 bHQKn bHQKn\' THEN \'far\' WHEN `databaseName` THEN \'college\' WHEN `city`=\'Orlando\' OR `city`=\'probably\' THEN \'boy\' WHEN `building`<>\'2672\' THEN \'wind\' WHEN `coordinate`=\'-21.907687\' THEN \'offer\' WHEN `state_abbreviation`=\'FL\' THEN \'its\' WHEN `driver license`=\'H872538367807\' THEN \'lose\' WHEN `international__mobile__equipment__identity`=\'42-161139-363377-6\' OR `international__mobile__equipment__identity`=\'attention\' THEN \'nor\' END FROM `business` WHERE (`schemaName`=\'BfgAeXWjbC BfgAeXWjbC\' OR `schemaName`=\'across\') AND `databaseName`<>\'hw w\' AND `city`=\'West Caroline\' AND `building`<>\'44030\' AND `coordinate`=\'-21.907687\' AND `state_abbreviation`=\'IA\' AND `driver license`=\'224242065\' AND `international__mobile__equipment__identity`=\'83-695777-883364-1\' LIMIT 10',
        0.35,
        "SQL"
    ],
    # XML samples
    [
        'b\'<?xml version=\"1.0\" encoding=\"UTF-8\" ?><root><sort type=\"str\"></sort><incumbent_challenge type=\"str\"></incumbent_challenge><longitude type=\"str\">-97.518538</longitude><has_raised_funds type=\"str\">True</has_raised_funds><airport type=\"str\">John F Kennedy International airport</airport><office type=\"str\">IDuqbH m</office><candidate_status type=\"str\">qEw3Tpc wmYqRUtTH</candidate_status><district type=\"str\">D UCd6ZAFD D</district><sort_nulls_last type=\"str\">False</sort_nulls_last><per_page type=\"str\">7720</per_page><state type=\"str\">South Dakota</state><location type=\"str\">-109.575655</location><airport_icao type=\"str\">EDDH</airport_icao><api_key type=\"str\">46nCNe0 Wj Wj</api_key><origin_airport_code type=\"str\">DEN</origin_airport_code><year type=\"str\">1996</year><sort_hide_null type=\"str\">False</sort_hide_null><cycle type=\"str\">FNxL</cycle><lat type=\"str\">43.16524</lat><sort_null_only type=\"str\">False</sort_null_only><page type=\"str\">4894426</page><election_year type=\"str\"></election_year><federal_funds_flag type=\"str\">False</federal_funds_flag><party type=\"str\"></party><name type=\"str\">aKPjF</name></root>\'',
        0.35,
        "XML"
    ],
    [
        'b\'<?xml version=\"1.0\" encoding=\"UTF-8\" ?><root><api_key type=\"str\">E hMCQl hMCQl</api_key><page type=\"str\">984478</page><max_primary_general_date type=\"str\">2008-01-29</max_primary_general_date><sort type=\"str\"></sort><election_type_id type=\"str\">L85O2N</election_type_id><election_district type=\"str\">M</election_district><max_election_date type=\"str\">2017-08-07</max_election_date><sort_null_only type=\"str\">False</sort_null_only><min_election_date type=\"str\">2007-07-01</min_election_date><per_page type=\"str\">452141118</per_page><min_primary_general_date type=\"str\">1977-07-12</min_primary_general_date><election_state type=\"str\"></election_state><election_party type=\"str\">CH4 Ceq Ceq</election_party><min_update_date type=\"str\">1980-04-11</min_update_date><sort_nulls_last type=\"str\">False</sort_nulls_last><max_create_date type=\"str\">1997-04-23</max_create_date><max_update_date type=\"str\">2020-12-25</max_update_date><sort_hide_null type=\"str\">True</sort_hide_null><election_year type=\"str\">v0rF4t8</election_year><min_create_date type=\"str\">2013-11-30</min_create_date></root>\'',
        0.35,
        "XML"
    ],
    [
        'b\'<?xml version=\"1.0\" encoding=\"UTF-8\" ?><root><nationality type=\"str\">American</nationality><last_name_male type=\"str\">Hayden</last_name_male><NextToken type=\"str\">YX8Fh4d NiOugSJPwm NiOugSJPwm</NextToken><StartDate type=\"str\">2007-04-07</StartDate><EndDate type=\"str\">1971-05-28</EndDate><family-name-female type=\"str\">Weishaar</family-name-female><PageSize type=\"str\">19750435</PageSize><prefix_male type=\"str\">Mr.</prefix_male><given__name__female type=\"str\">Dara</given__name__female><nation_man type=\"str\">bulgarian</nation_man></root>\'',
        0.35,
        "XML"
    ],
    [
        'b\'<?xml version=\"1.0\" encoding=\"UTF-8\" ?><root><imei type=\"str\">30-696164-389965-5</imei><post-code type=\"str\">33179</post-code><startTime type=\"str\">2017-02-05 13:11:21</startTime><timeGrain type=\"str\">S</timeGrain><longitude type=\"str\">-80.270951</longitude><latitude type=\"str\">25.898545</latitude><endTime type=\"str\">1990-02-04 22:51:09</endTime><api-version type=\"str\">Ad Ad wM5NWqRt</api-version><key_store_password type=\"str\">Shohr3aep</key_store_password><bank_account type=\"str\">BZEV05211288606606</bank_account></root>\'',
        0.35,
        "XML"
    ],
    # HTML samples
    [
        '<table border=\"1\"><tr><th>api_key</th><td>PmtrSlgEzO PmtrSlgEzO br</td></tr><tr><th>page</th><td>73595</td></tr><tr><th>max_primary_general_date</th><td>1992-09-22</td></tr><tr><th>sort</th><td>RqJu PZwhjrbcS</td></tr><tr><th>election_type_id</th><td>PFTZDOBxIl</td></tr><tr><th>election_district</th><td>XNc7rk</td></tr><tr><th>max_election_date</th><td>2007-02-15</td></tr><tr><th>sort_null_only</th><td>False</td></tr><tr><th>min_election_date</th><td>2014-06-27</td></tr><tr><th>per_page</th><td>62971536</td></tr><tr><th>min_primary_general_date</th><td>1982-03-22</td></tr><tr><th>election_state</th><td>xzJis</td></tr><tr><th>election_party</th><td>lHUet 1vtAg5J lHUet</td></tr><tr><th>min_update_date</th><td>1984-07-25</td></tr><tr><th>sort_nulls_last</th><td>False</td></tr><tr><th>max_create_date</th><td>1980-01-02</td></tr><tr><th>max_update_date</th><td>1997-11-10</td></tr><tr><th>sort_hide_null</th><td>True</td></tr><tr><th>election_year</th><td>hNf2nYGMbX</td></tr><tr><th>min_create_date</th><td>2000-11-25</td></tr></table>',
        0.35,
        "HTML"
    ],
    [
        '<table border=\"1\"><tr><th>religion</th><td>Christianity</td></tr><tr><th>api-version</th><td>dCwMNqR</td></tr><tr><th>to_contact</th><td>[email protected]</td></tr><tr><th>spot</th><td>6765 2278 Norma Avenue Mcbee , SC 33987</td></tr><tr><th>endTime</th><td>2022-09-07 14:17:30</td></tr><tr><th>startTime</th><td>2001-09-20 20:45:43</td></tr><tr><th>facility</th><td>Apt. 074</td></tr><tr><th>vocation</th><td>Lay-out worker</td></tr><tr><th>alley</th><td>1697 2496 White Pine Lane Apt. 904</td></tr></table>',
        0.35,
        "HTML"
    ],
    [
        '<table border=\"1\"><tr><th>imei</th><td>25-894407-891989-9</td></tr><tr><th>post-code</th><td>2142</td></tr><tr><th>startTime</th><td>2001-06-20 10:16:33</td></tr><tr><th>timeGrain</th><td></td></tr><tr><th>longitude</th><td>-70.990988</td></tr><tr><th>latitude</th><td>42.32382</td></tr><tr><th>endTime</th><td>1971-08-20 19:09:13</td></tr><tr><th>api-version</th><td>u zNS zNS</td></tr><tr><th>key store password</th><td>teiy1oD5ie</td></tr><tr><th>bank account</th><td>FILW85959012098599</td></tr></table>',
        0.35,
        "HTML"
    ],
    [
        '<table border=\"1\"><tr><th>country</th><td>United States</td></tr><tr><th>address</th><td>0133 2669 Locust Street Suite 601 Fort Gaines United States</td></tr><tr><th>project</th><td></td></tr><tr><th>nation_plural</th><td>vietnameses</td></tr><tr><th>urban__area</th><td>Buena Park</td></tr><tr><th>region</th><td>California</td></tr><tr><th>street</th><td>01474 3910 Melody Lane Apt. 383</td></tr><tr><th>phone-country-code</th><td>US</td></tr><tr><th>spot</th><td>Apt. 554</td></tr></table>',
        0.35,
        "HTML"
    ],
    # Natural Text examples
    [
        "Dr. Sarah Martinez, age 34, works as a Senior Data Scientist at TechCorp International. Her employee ID is TC-DS-5591 and she joined the company on 2019-03-15. Sarah lives at 1247 Oak Avenue, Apartment 5B, Portland, Oregon 97205. Her work phone is 503-555-0147 and personal email is [email protected]. For banking, she uses account TCBK89012345678901 at First National Bank. Her driver's license number is OR-DL-M8829134 and her social security number is 123-45-6789. She recently traveled to London using passport US-P-543216789 and her frequent flyer number with Delta Airlines is DL987654321.",
        0.35,
        "Documents"
    ],
    [
        "The customer database contains the following entries: Michael Chen (DOB: 1985-07-22, age 38) residing at 789 Pine Street, Suite 200, San Francisco, CA 94102. His contact details include phone 415-555-0298 and email [email protected]. Financial information: Chase Bank account CH-5567889012345678, credit card 4532-1234-5678-9012 (exp: 08/2027, CVV: 451). Professional details: Software Engineer at InnovateTech LLC, employee ID IT-SE-7793, salary $125,000. Government IDs include SSN 987-65-4321, California driver's license CA-DL-B1234567, and passport number US-578912345. His device MAC address is aa:bb:cc:dd:ee:ff and IMEI 358240051111110.",
        0.35,
        "Documents"
    ],
    [
        "Security incident report for Lisa Thompson (ID: LT-2023-001): On 2023-11-15 at 14:30 PST, user accessed system from IP address 192.168.1.100 using API key api_key_abc123xyz789. Employee details: Lisa Thompson, age 29, title Senior Security Analyst, department Cybersecurity, hired 2021-09-01. Home address: 456 Maple Drive, Unit 3C, Seattle, WA 98109. Contact: phone 206-555-0189, work email [email protected]. Banking: Wells Fargo account WF-4455667788990011, routing number 021000021. Government IDs: SSN 555-44-3333, WA driver's license WA-DL-THOMP567, passport US-890123456. Vehicle: 2020 Honda Civic, license plate WA-ABC1234, VIN 1HGBH41JXMN109186.",
        0.35,
        "Documents"
    ],
    [
        "Patient intake form: Dr. Robert Kim (Medical License: MD-12345-WA), age 42, practices at Seattle General Hospital, 1500 Medical Center Drive, Seattle, WA 98101. Phone: 206-555-0234, fax: 206-555-0235, email: [email protected]. Patient information: Jennifer Walsh, DOB 1990-12-03 (age 33), SSN 111-22-3333, address 2100 Broadway Ave, Apt 15D, Seattle, WA 98122. Insurance: Blue Cross Blue Shield, policy BC-556677889900, group 12345. Emergency contact: Mark Walsh (spouse), phone 206-555-0167. Medical history includes prescription for Medication XYZ, DEA number DR1234567. Appointment scheduled for 2024-01-20 at 10:00 AM, confirmation code CONF-789456.",
        0.35,
        "Documents"
    ],
]

with gr.Blocks(title="Gravitee BERT PII") as demo:
    gr.Markdown(
        f"""
        # Gravitee BERT PII (Personally Identifiable Information extraction)

        This application uses the **{MODEL_NAME}** model for Named Entity Recognition (NER) to detect personally identifiable information.
        The model uses token classification with BIO tagging to identify predefined entity types including names, addresses,
        financial information, and more.
        """
    )

    with gr.Accordion("Available Entity Types", open=False):
        gr.Markdown(
            """
            The BERT models can detect the following entity types:

            **Personal Information:**
            - PERSON (names)
            - AGE
            - PHONE_NUMBER
            - EMAIL_ADDRESS

            **Location & Address:**
            - LOCATION
            - COORDINATE

            **Financial:**
            - CREDIT_CARD
            - IBAN_CODE
            - FINANCIAL
            - US_BANK_NUMBER

            **Government IDs:**
            - US_SSN (Social Security Number)
            - US_DRIVER_LICENSE
            - US_PASSPORT
            - US_ITIN
            - US_LICENSE_PLATE
            - NRP (National Registration Number)

            **Technical:**
            - IP_ADDRESS
            - MAC_ADDRESS
            - URL
            - IMEI
            - PASSWORD

            **Other:**
            - DATE_TIME
            - ORGANIZATION
            - TITLE
            """
        )

    with gr.Accordion("How to run this model locally", open=False):
        gr.Markdown(
            """
            ## Installation
            To use this model, install the required dependencies:
            ```
            pip install transformers optimum[onnxruntime] torch
            ```

            ## Usage
            Load the model using the Optimum library for ONNX Runtime:
            ```python
            from optimum.onnxruntime import ORTModelForTokenClassification
            from transformers import AutoTokenizer

            model_path = "gravitee-io/bert-small-pii-detection"
            tokenizer = AutoTokenizer.from_pretrained(model_path)
            model = ORTModelForTokenClassification.from_pretrained(model_path, file_name="model.onnx")

            text = "John Doe lives at 123 Main St and his email is [email protected]"
            inputs = tokenizer(text, return_tensors="pt", return_offsets_mapping=True)
            outputs = model(**inputs)
            ```
            """
        )

    input_text = gr.Textbox(
        value=examples[0][0],
        label="Text input",
        placeholder="Enter your text here"
    )

    with gr.Row():
        threshold = gr.Slider(
            0,
            1,
            value=0.35,
            step=0.01,
            label="Confidence Threshold",
            info="Lower the threshold to get more predictions with lower confidence.",
            scale=2
        )

        data_type_display = gr.Textbox(
            value=examples[0][2],
            label="Data Type",
            interactive=False,
            scale=1
        )

        format_checkbox = gr.Checkbox(
            value=False,
            label="Format Text",
            info="Auto-format JSON, XML, HTML, SQL with proper indentation",
            scale=1
        )

    output = gr.HighlightedText(label="Predicted Entities")
    submit_btn = gr.Button("Submit")

    examples_component = gr.Examples(
        examples,
        fn=ner,
        inputs=[input_text, threshold, data_type_display, format_checkbox],
        outputs=output,
        cache_examples=False,
    )

    # Event handlers
    input_text.submit(fn=ner, inputs=[input_text, threshold, data_type_display, format_checkbox], outputs=output)
    threshold.release(fn=ner, inputs=[input_text, threshold, data_type_display, format_checkbox], outputs=output)
    format_checkbox.change(fn=ner, inputs=[input_text, threshold, data_type_display, format_checkbox], outputs=output)
    submit_btn.click(fn=ner, inputs=[input_text, threshold, data_type_display, format_checkbox], outputs=output)

if __name__ == "__main__":
    demo.queue()
    demo.launch(debug=True)