Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pytesseract | |
| from PIL import Image | |
| from transformers import pipeline | |
| import re | |
| # Language detection & translation | |
| from langdetect import detect | |
| from googletrans import Translator | |
| translator = Translator() | |
| # 1. Load separate keywords for SMiShing and Other Scam (assumed in English) | |
| with open("smishing_keywords.txt", "r", encoding="utf-8") as f: | |
| SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()] | |
| with open("other_scam_keywords.txt", "r", encoding="utf-8") as f: | |
| OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()] | |
| # 2. Zero-Shot Classification Pipeline | |
| model_name = "joeddav/xlm-roberta-large-xnli" | |
| classifier = pipeline("zero-shot-classification", model=model_name) | |
| CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"] | |
| def get_keywords_by_language(text: str): | |
| """ | |
| 1. Detect language (using `langdetect`). | |
| 2. If Spanish ('es'), translate each English-based keyword to Spanish using googletrans. | |
| 3. If English (or anything else), just use the original English lists. | |
| """ | |
| # Attempt to detect language from a snippet (to reduce overhead on very large text) | |
| snippet = text[:200] # up to 200 chars for detection | |
| try: | |
| detected_lang = detect(snippet) | |
| except: | |
| detected_lang = "en" # fallback if detection fails | |
| if detected_lang == "es": | |
| # Translate all SMiShing and Other Scam keywords to Spanish | |
| smishing_in_spanish = [ | |
| translator.translate(kw, src="en", dest="es").text.lower() | |
| for kw in SMISHING_KEYWORDS | |
| ] | |
| other_scam_in_spanish = [ | |
| translator.translate(kw, src="en", dest="es").text.lower() | |
| for kw in OTHER_SCAM_KEYWORDS | |
| ] | |
| return smishing_in_spanish, other_scam_in_spanish, "es" | |
| else: | |
| # Default to English keywords | |
| return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en" | |
| def boost_probabilities(probabilities: dict, text: str): | |
| """ | |
| 1. Load the appropriate keyword lists (English or Spanish). | |
| 2. Count matches for SMiShing vs. Other Scam. | |
| 3. If a URL is found, add an extra boost only to SMiShing. | |
| 4. Subtract total boost from 'Legitimate'. | |
| 5. Clamp negative probabilities to 0, re-normalize. | |
| """ | |
| lower_text = text.lower() | |
| # Grab the correct keyword lists based on language | |
| smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text) | |
| # Count SMiShing keyword matches | |
| smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text) | |
| # Count Other Scam keyword matches | |
| other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text) | |
| # Base boost amounts | |
| smishing_boost = 0.30 * smishing_count | |
| other_scam_boost = 0.30 * other_scam_count | |
| # Check for URLs => +0.35 only to SMiShing | |
| found_urls = re.findall(r"(https?://[^\s]+)", lower_text) | |
| if found_urls: | |
| smishing_boost += 0.35 | |
| # Extract original probabilities | |
| p_smishing = probabilities["SMiShing"] | |
| p_other_scam = probabilities["Other Scam"] | |
| p_legit = probabilities["Legitimate"] | |
| # Apply boosts | |
| p_smishing += smishing_boost | |
| p_other_scam += other_scam_boost | |
| # Subtract total boost from 'Legitimate' | |
| total_boost = smishing_boost + other_scam_boost | |
| p_legit -= total_boost | |
| # Clamp negative probabilities | |
| if p_smishing < 0: | |
| p_smishing = 0.0 | |
| if p_other_scam < 0: | |
| p_other_scam = 0.0 | |
| if p_legit < 0: | |
| p_legit = 0.0 | |
| # Re-normalize | |
| total = p_smishing + p_other_scam + p_legit | |
| if total > 0: | |
| p_smishing /= total | |
| p_other_scam /= total | |
| p_legit /= total | |
| else: | |
| # fallback if everything is 0 | |
| p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0 | |
| return { | |
| "SMiShing": p_smishing, | |
| "Other Scam": p_other_scam, | |
| "Legitimate": p_legit, | |
| "detected_lang": detected_lang | |
| } | |
| def smishing_detector(text, image): | |
| """ | |
| Main function called by Gradio. | |
| 1. Combine user text + OCR text (if an image is provided). | |
| 2. Zero-shot classify => base probabilities. | |
| 3. Apply language detection & translation if needed, then boost logic. | |
| 4. Return final classification. | |
| """ | |
| combined_text = text or "" | |
| if image is not None: | |
| ocr_text = pytesseract.image_to_string(image, lang="spa+eng") | |
| combined_text += " " + ocr_text | |
| combined_text = combined_text.strip() | |
| if not combined_text: | |
| return { | |
| "text_used_for_classification": "(none)", | |
| "label": "No text provided", | |
| "confidence": 0.0, | |
| "keywords_found": [], | |
| "urls_found": [] | |
| } | |
| # 1. Zero-shot classification | |
| result = classifier( | |
| sequences=combined_text, | |
| candidate_labels=CANDIDATE_LABELS, | |
| hypothesis_template="This message is {}." | |
| ) | |
| original_probs = dict(zip(result["labels"], result["scores"])) | |
| # 2. Boost logic (including language detection + translation) | |
| boosted = boost_probabilities(original_probs, combined_text) | |
| final_label = max(boosted, key=boosted.get) if not isinstance(boosted.get("detected_lang"), float) else "Legitimate" | |
| # to avoid conflict, let's store the detected language separately: | |
| detected_lang = boosted.pop("detected_lang", "en") | |
| # We have p_smishing, p_other_scam, p_legit left in boosted | |
| final_label = max(boosted, key=boosted.get) | |
| final_confidence = round(boosted[final_label], 3) | |
| # 3. Identify which keywords & URLs we found | |
| lower_text = combined_text.lower() | |
| # If we detected Spanish, we used the translated keywords to do matching. But let's also show them: | |
| # For demonstration, let's just show the "English or Spanish" keywords. The code to show them in output | |
| # can be the same as before, or you can do a second pass with the same logic from boost_probabilities. | |
| found_urls = re.findall(r"(https?://[^\s]+)", lower_text) | |
| # We'll do a quick second pass on actual matched keywords so user sees them | |
| # - If language is es => we used translated Spanish keywords, let's do the same for display | |
| # - If language is en => we used the original English lists | |
| if detected_lang == "es": | |
| smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text) | |
| else: | |
| smishing_keys, scam_keys, _ = (SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en") | |
| found_smishing = [kw for kw in smishing_keys if kw in lower_text] | |
| found_other_scam = [kw for kw in scam_keys if kw in lower_text] | |
| return { | |
| "detected_language": detected_lang, | |
| "text_used_for_classification": combined_text, | |
| "original_probabilities": { | |
| k: round(v, 3) for k, v in original_probs.items() | |
| }, | |
| "boosted_probabilities": { | |
| k: round(v, 3) for k, v in boosted.items() | |
| }, | |
| "label": final_label, | |
| "confidence": final_confidence, | |
| "smishing_keywords_found": found_smishing, | |
| "other_scam_keywords_found": found_other_scam, | |
| "urls_found": found_urls, | |
| } | |
| demo = gr.Interface( | |
| fn=smishing_detector, | |
| inputs=[ | |
| gr.Textbox( | |
| lines=3, | |
| label="Paste Suspicious SMS Text (English/Spanish)", | |
| placeholder="Type or paste the message here..." | |
| ), | |
| gr.Image( | |
| type="pil", | |
| label="Or Upload a Screenshot (Optional)" | |
| ) | |
| ], | |
| outputs="json", | |
| title="SMiShing & Scam Detector (Language Detection + Keyword Translation)", | |
| description=""" | |
| This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model | |
| (joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English. | |
| If Spanish, it translates the English-based keyword lists to Spanish before boosting the scores. | |
| Any URL found further boosts SMiShing specifically. | |
| """, | |
| allow_flagging="never" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |