Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pytesseract | |
| from PIL import Image | |
| from transformers import pipeline | |
| import re | |
| from langdetect import detect | |
| from deep_translator import GoogleTranslator | |
| import openai | |
| import os | |
| # Set your OpenAI API key | |
| openai.api_key = os.getenv("OPENAI_API_KEY") | |
| # Translator instance | |
| translator = GoogleTranslator(source="auto", target="es") | |
| # 1. Load separate keywords for SMiShing and Other Scam (assumed in English) | |
| with open("smishing_keywords.txt", "r", encoding="utf-8") as f: | |
| SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()] | |
| with open("other_scam_keywords.txt", "r", encoding="utf-8") as f: | |
| OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()] | |
| # 2. Zero-Shot Classification Pipeline | |
| model_name = "joeddav/xlm-roberta-large-xnli" | |
| classifier = pipeline("zero-shot-classification", model=model_name) | |
| CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"] | |
| def get_keywords_by_language(text: str): | |
| """ | |
| Detect language using langdetect and translate keywords if needed. | |
| """ | |
| snippet = text[:200] | |
| try: | |
| detected_lang = detect(snippet) | |
| except Exception: | |
| detected_lang = "en" | |
| if detected_lang == "es": | |
| smishing_in_spanish = [ | |
| translator.translate(kw).lower() for kw in SMISHING_KEYWORDS | |
| ] | |
| other_scam_in_spanish = [ | |
| translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS | |
| ] | |
| return smishing_in_spanish, other_scam_in_spanish, "es" | |
| else: | |
| return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en" | |
| def boost_probabilities(probabilities: dict, text: str): | |
| """ | |
| Boost probabilities based on keyword matches and presence of URLs. | |
| """ | |
| lower_text = text.lower() | |
| smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text) | |
| smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text) | |
| other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text) | |
| smishing_boost = 0.30 * smishing_count | |
| other_scam_boost = 0.30 * other_scam_count | |
| found_urls = re.findall(r"(https?://[^\s]+|\b(?:[a-zA-Z0-9.-]+\.(?:com|net|org|edu|gov|mil|io|ai|co|info|biz|us|uk|de|fr|es|ru|jp|cn|in|au|ca|br|mx|it|nl|se|no|fi|ch|pl|kr|vn|id|tw|sg|hk))\b)", lower_text) | |
| if found_urls: | |
| smishing_boost += 0.35 | |
| p_smishing = probabilities.get("SMiShing", 0.0) | |
| p_other_scam = probabilities.get("Other Scam", 0.0) | |
| p_legit = probabilities.get("Legitimate", 1.0) | |
| p_smishing += smishing_boost | |
| p_other_scam += other_scam_boost | |
| p_legit -= (smishing_boost + other_scam_boost) | |
| # Clamp | |
| p_smishing = max(p_smishing, 0.0) | |
| p_other_scam = max(p_other_scam, 0.0) | |
| p_legit = max(p_legit, 0.0) | |
| # Re-normalize | |
| total = p_smishing + p_other_scam + p_legit | |
| if total > 0: | |
| p_smishing /= total | |
| p_other_scam /= total | |
| p_legit /= total | |
| else: | |
| p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0 | |
| return { | |
| "SMiShing": p_smishing, | |
| "Other Scam": p_other_scam, | |
| "Legitimate": p_legit, | |
| "detected_lang": detected_lang | |
| } | |
| def query_llm_for_classification(raw_message: str) -> dict: | |
| """ | |
| First LLM call: asks for a classification (SMiShing, Other Scam, or Legitimate) | |
| acting as a cybersecurity expert. Returns label and short reason. | |
| """ | |
| if not raw_message.strip(): | |
| return {"label": "Unknown", "reason": "No message provided to the LLM."} | |
| system_prompt = ( | |
| "You are a cybersecurity expert. You will classify the user's message " | |
| "as one of: SMiShing, Other Scam, or Legitimate. Provide a short reason. " | |
| "Return only JSON with keys: label, reason." | |
| ) | |
| user_prompt = f"Message: {raw_message}\nClassify it as SMiShing, Other Scam, or Legitimate." | |
| try: | |
| response = openai.ChatCompletion.create( | |
| model="gpt-4-turbo", | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_prompt} | |
| ], | |
| temperature=0.2 | |
| ) | |
| raw_reply = response["choices"][0]["message"]["content"].strip() | |
| import json | |
| llm_result = json.loads(raw_reply) | |
| if "label" not in llm_result or "reason" not in llm_result: | |
| return {"label": "Unknown", "reason": f"Unexpected format: {raw_reply}"} | |
| return llm_result | |
| except Exception as e: | |
| return {"label": "Unknown", "reason": f"LLM error: {e}"} | |
| def incorporate_llm_label(boosted: dict, llm_label: str) -> dict: | |
| """ | |
| Adjust the final probabilities based on the LLM's classification. | |
| If LLM says SMiShing, add +0.2 to SMiShing, etc. Then clamp & re-normalize. | |
| """ | |
| if llm_label == "SMiShing": | |
| boosted["SMiShing"] += 0.2 | |
| elif llm_label == "Other Scam": | |
| boosted["Other Scam"] += 0.2 | |
| elif llm_label == "Legitimate": | |
| boosted["Legitimate"] += 0.2 | |
| # else "Unknown" => do nothing | |
| # clamp | |
| for k in boosted: | |
| if boosted[k] < 0: | |
| boosted[k] = 0.0 | |
| total = sum(boosted.values()) | |
| if total > 0: | |
| for k in boosted: | |
| boosted[k] /= total | |
| else: | |
| # fallback | |
| boosted["Legitimate"] = 1.0 | |
| boosted["SMiShing"] = 0.0 | |
| boosted["Other Scam"] = 0.0 | |
| return boosted | |
| def query_llm_for_explanation( | |
| text: str, | |
| final_label: str, | |
| final_conf: float, | |
| local_label: str, | |
| local_conf: float, | |
| llm_label: str, | |
| llm_reason: str, | |
| found_smishing: list, | |
| found_other_scam: list, | |
| found_urls: list, | |
| detected_lang: str | |
| ) -> str: | |
| """ | |
| Second LLM call: provides a holistic explanation of the final classification | |
| in the same language as detected_lang (English or Spanish). | |
| """ | |
| # Decide the language for final explanation | |
| if detected_lang == "es": | |
| # Spanish | |
| system_prompt = ( | |
| "Eres un experto en ciberseguridad. Proporciona una explicación final al usuario en español. " | |
| "Combina la clasificación local, la clasificación LLM y la etiqueta final en una sola explicación breve. " | |
| "No reveles el código interno ni el JSON bruto; simplemente da una breve explicación fácil de entender. " | |
| "Termina con la etiqueta final. " | |
| ) | |
| else: | |
| # Default to English | |
| system_prompt = ( | |
| "You are a cybersecurity expert providing a final explanation to the user in English. " | |
| "Combine the local classification, the LLM classification, and the final label " | |
| "into one concise explanation. Do not reveal internal code or raw JSON. " | |
| "End with a final statement of the final label." | |
| ) | |
| user_context = f""" | |
| User Message: | |
| {text} | |
| Local Classification => Label: {local_label}, Confidence: {local_conf} | |
| LLM Classification => Label: {llm_label}, Reason: {llm_reason} | |
| Final Overall Label => {final_label} (confidence {final_conf}) | |
| Suspicious SMiShing Keywords => {found_smishing} | |
| Suspicious Other Scam Keywords => {found_other_scam} | |
| URLs => {found_urls} | |
| """ | |
| try: | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_context} | |
| ], | |
| temperature=0.2 | |
| ) | |
| final_explanation = response["choices"][0]["message"]["content"].strip() | |
| return final_explanation | |
| except Exception as e: | |
| return f"Could not generate final explanation due to error: {e}" | |
| def smishing_detector(input_type, text, image): | |
| """ | |
| Main detection function combining text (if 'Text') & OCR (if 'Screenshot'), | |
| plus two LLM calls: | |
| 1) classification to adjust final probabilities, | |
| 2) a final explanation summarizing the outcome in the detected language. | |
| """ | |
| if input_type == "Text": | |
| combined_text = text.strip() if text else "" | |
| else: | |
| combined_text = "" | |
| if image is not None: | |
| combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip() | |
| if not combined_text: | |
| return { | |
| "text_used_for_classification": "(none)", | |
| "label": "No text provided", | |
| "confidence": 0.0, | |
| "keywords_found": [], | |
| "urls_found": [], | |
| "llm_label": "Unknown", | |
| "llm_reason": "No text to analyze", | |
| "final_explanation": "No text provided" | |
| } | |
| # 1. Local zero-shot classification | |
| local_result = classifier( | |
| sequences=combined_text, | |
| candidate_labels=CANDIDATE_LABELS, | |
| hypothesis_template="This message is {}." | |
| ) | |
| original_probs = {k: float(v) for k, v in zip(local_result["labels"], local_result["scores"])} | |
| # 2. Basic boosting from keywords & URLs | |
| boosted = boost_probabilities(original_probs, combined_text) | |
| detected_lang = boosted.pop("detected_lang", "en") | |
| # Convert to float only | |
| for k in boosted: | |
| boosted[k] = float(boosted[k]) | |
| local_label = max(boosted, key=boosted.get) | |
| local_conf = round(boosted[local_label], 3) | |
| # 3. LLM Classification | |
| llm_classification = query_llm_for_classification(combined_text) | |
| llm_label = llm_classification.get("label", "Unknown") | |
| llm_reason = llm_classification.get("reason", "No reason provided") | |
| # 4. Incorporate LLM’s label into final probabilities | |
| boosted = incorporate_llm_label(boosted, llm_label) | |
| # Now we have updated probabilities | |
| final_label = max(boosted, key=boosted.get) | |
| final_confidence = round(boosted[final_label], 3) | |
| # 5. Gather found keywords & URLs | |
| lower_text = combined_text.lower() | |
| smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text) | |
| found_urls = re.findall(r"(https?://[^\s]+|\b(?:[a-zA-Z0-9.-]+\.(?:com|net|org|edu|gov|mil|io|ai|co|info|biz|us|uk|de|fr|es|ru|jp|cn|in|au|ca|br|mx|it|nl|se|no|fi|ch|pl|kr|vn|id|tw|sg|hk))\b)", lower_text) | |
| found_smishing = [kw for kw in smishing_keys if kw in lower_text] | |
| found_other_scam = [kw for kw in scam_keys if kw in lower_text] | |
| # 6. Final LLM explanation (in detected_lang) | |
| final_explanation = query_llm_for_explanation( | |
| text=combined_text, | |
| final_label=final_label, | |
| final_conf=final_confidence, | |
| local_label=local_label, | |
| local_conf=local_conf, | |
| llm_label=llm_label, | |
| llm_reason=llm_reason, | |
| found_smishing=found_smishing, | |
| found_other_scam=found_other_scam, | |
| found_urls=found_urls, | |
| detected_lang=detected_lang | |
| ) | |
| return { | |
| "detected_language": detected_lang, | |
| "text_used_for_classification": combined_text, | |
| "original_probabilities": {k: round(v, 3) for k, v in original_probs.items()}, | |
| "boosted_probabilities_before_llm": {local_label: local_conf}, | |
| "llm_label": llm_label, | |
| "llm_reason": llm_reason, | |
| "boosted_probabilities_after_llm": {k: round(v, 3) for k, v in boosted.items()}, | |
| "label": final_label, | |
| "confidence": final_confidence, | |
| "smishing_keywords_found": found_smishing, | |
| "other_scam_keywords_found": found_other_scam, | |
| "urls_found": found_urls, | |
| "final_explanation": final_explanation, | |
| } | |
| # | |
| # Gradio interface with dynamic visibility | |
| # | |
| def toggle_inputs(choice): | |
| """ | |
| Return updates for (text_input, image_input) based on the radio selection. | |
| """ | |
| if choice == "Text": | |
| # Show text input, hide image | |
| return gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| # choice == "Screenshot" | |
| # Hide text input, show image | |
| return gr.update(visible=False), gr.update(visible=True) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## SMiShing & Scam Detector with LLM-Enhanced Logic (Multilingual Explanation)") | |
| with gr.Row(): | |
| input_type = gr.Radio( | |
| choices=["Text", "Screenshot"], | |
| value="Text", | |
| label="Choose Input Type" | |
| ) | |
| text_input = gr.Textbox( | |
| lines=3, | |
| label="Paste Suspicious SMS Text", | |
| placeholder="Type or paste the message here...", | |
| visible=True # default | |
| ) | |
| image_input = gr.Image( | |
| type="pil", | |
| label="Upload Screenshot", | |
| visible=False # hidden by default | |
| ) | |
| # Whenever input_type changes, toggle which input is visible | |
| input_type.change( | |
| fn=toggle_inputs, | |
| inputs=input_type, | |
| outputs=[text_input, image_input], | |
| queue=False | |
| ) | |
| # Button to run classification | |
| analyze_btn = gr.Button("Classify") | |
| output_json = gr.JSON(label="Result") | |
| # On button click, call the smishing_detector | |
| analyze_btn.click( | |
| fn=smishing_detector, | |
| inputs=[input_type, text_input, image_input], | |
| outputs=output_json | |
| ) | |
| if __name__ == "__main__": | |
| if not openai.api_key: | |
| print("WARNING: OPENAI_API_KEY not set. LLM calls will fail or be skipped.") | |
| demo.launch() |