hackerbyhobby
commited on
updated app to have user choose text or OCR and hide elements
Browse files- app.py +69 -53
- app.py.working_ocr_selection +194 -0
app.py
CHANGED
|
@@ -21,16 +21,15 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
| 21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
|
| 24 |
-
|
| 25 |
def get_keywords_by_language(text: str):
|
| 26 |
"""
|
| 27 |
Detect language using `langdetect` and translate keywords if needed.
|
| 28 |
"""
|
| 29 |
-
snippet = text[:200]
|
| 30 |
try:
|
| 31 |
detected_lang = detect(snippet)
|
| 32 |
except Exception:
|
| 33 |
-
detected_lang = "en"
|
| 34 |
|
| 35 |
if detected_lang == "es":
|
| 36 |
smishing_in_spanish = [
|
|
@@ -43,7 +42,6 @@ def get_keywords_by_language(text: str):
|
|
| 43 |
else:
|
| 44 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 45 |
|
| 46 |
-
|
| 47 |
def boost_probabilities(probabilities: dict, text: str):
|
| 48 |
"""
|
| 49 |
Boost probabilities based on keyword matches and presence of URLs.
|
|
@@ -54,13 +52,11 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 54 |
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
| 55 |
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
| 56 |
|
| 57 |
-
# Example: 30% per found keyword
|
| 58 |
smishing_boost = 0.30 * smishing_count
|
| 59 |
other_scam_boost = 0.30 * other_scam_count
|
| 60 |
|
| 61 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 62 |
if found_urls:
|
| 63 |
-
# 35% boost for Smishing if there's a URL
|
| 64 |
smishing_boost += 0.35
|
| 65 |
|
| 66 |
p_smishing = probabilities.get("SMiShing", 0.0)
|
|
@@ -71,7 +67,7 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 71 |
p_other_scam += other_scam_boost
|
| 72 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 73 |
|
| 74 |
-
# Clamp
|
| 75 |
p_smishing = max(p_smishing, 0.0)
|
| 76 |
p_other_scam = max(p_other_scam, 0.0)
|
| 77 |
p_legit = max(p_legit, 0.0)
|
|
@@ -92,23 +88,18 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 92 |
"detected_lang": detected_lang
|
| 93 |
}
|
| 94 |
|
| 95 |
-
|
| 96 |
def smishing_detector(input_type, text, image):
|
| 97 |
"""
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
- If input_type == "Screenshot": use OCR on `image` to get text
|
| 101 |
"""
|
| 102 |
if input_type == "Text":
|
| 103 |
-
# Use the pasted text
|
| 104 |
combined_text = text.strip() if text else ""
|
| 105 |
else:
|
| 106 |
# input_type == "Screenshot"
|
|
|
|
| 107 |
if image is not None:
|
| 108 |
-
|
| 109 |
-
combined_text = ocr_text.strip()
|
| 110 |
-
else:
|
| 111 |
-
combined_text = ""
|
| 112 |
|
| 113 |
if not combined_text:
|
| 114 |
return {
|
|
@@ -129,16 +120,12 @@ def smishing_detector(input_type, text, image):
|
|
| 129 |
|
| 130 |
# Boost logic
|
| 131 |
boosted = boost_probabilities(original_probs, combined_text)
|
| 132 |
-
|
| 133 |
-
# Convert to float
|
| 134 |
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
| 135 |
-
detected_lang = boosted.pop("detected_lang", "en")
|
| 136 |
|
| 137 |
-
|
| 138 |
final_label = max(boosted, key=boosted.get)
|
| 139 |
final_confidence = round(boosted[final_label], 3)
|
| 140 |
|
| 141 |
-
# For display
|
| 142 |
lower_text = combined_text.lower()
|
| 143 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
| 144 |
|
|
@@ -149,8 +136,12 @@ def smishing_detector(input_type, text, image):
|
|
| 149 |
return {
|
| 150 |
"detected_language": detected_lang,
|
| 151 |
"text_used_for_classification": combined_text,
|
| 152 |
-
"original_probabilities": {
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
"label": final_label,
|
| 155 |
"confidence": final_confidence,
|
| 156 |
"smishing_keywords_found": found_smishing,
|
|
@@ -158,37 +149,62 @@ def smishing_detector(input_type, text, image):
|
|
| 158 |
"urls_found": found_urls,
|
| 159 |
}
|
| 160 |
|
| 161 |
-
|
| 162 |
-
#
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
demo.launch()
|
|
|
|
| 21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
|
|
|
|
| 24 |
def get_keywords_by_language(text: str):
|
| 25 |
"""
|
| 26 |
Detect language using `langdetect` and translate keywords if needed.
|
| 27 |
"""
|
| 28 |
+
snippet = text[:200]
|
| 29 |
try:
|
| 30 |
detected_lang = detect(snippet)
|
| 31 |
except Exception:
|
| 32 |
+
detected_lang = "en"
|
| 33 |
|
| 34 |
if detected_lang == "es":
|
| 35 |
smishing_in_spanish = [
|
|
|
|
| 42 |
else:
|
| 43 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 44 |
|
|
|
|
| 45 |
def boost_probabilities(probabilities: dict, text: str):
|
| 46 |
"""
|
| 47 |
Boost probabilities based on keyword matches and presence of URLs.
|
|
|
|
| 52 |
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
| 53 |
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
| 54 |
|
|
|
|
| 55 |
smishing_boost = 0.30 * smishing_count
|
| 56 |
other_scam_boost = 0.30 * other_scam_count
|
| 57 |
|
| 58 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 59 |
if found_urls:
|
|
|
|
| 60 |
smishing_boost += 0.35
|
| 61 |
|
| 62 |
p_smishing = probabilities.get("SMiShing", 0.0)
|
|
|
|
| 67 |
p_other_scam += other_scam_boost
|
| 68 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 69 |
|
| 70 |
+
# Clamp
|
| 71 |
p_smishing = max(p_smishing, 0.0)
|
| 72 |
p_other_scam = max(p_other_scam, 0.0)
|
| 73 |
p_legit = max(p_legit, 0.0)
|
|
|
|
| 88 |
"detected_lang": detected_lang
|
| 89 |
}
|
| 90 |
|
|
|
|
| 91 |
def smishing_detector(input_type, text, image):
|
| 92 |
"""
|
| 93 |
+
Only use the textbox if input_type == "Text",
|
| 94 |
+
otherwise perform OCR on the image if input_type == "Screenshot".
|
|
|
|
| 95 |
"""
|
| 96 |
if input_type == "Text":
|
|
|
|
| 97 |
combined_text = text.strip() if text else ""
|
| 98 |
else:
|
| 99 |
# input_type == "Screenshot"
|
| 100 |
+
combined_text = ""
|
| 101 |
if image is not None:
|
| 102 |
+
combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
if not combined_text:
|
| 105 |
return {
|
|
|
|
| 120 |
|
| 121 |
# Boost logic
|
| 122 |
boosted = boost_probabilities(original_probs, combined_text)
|
|
|
|
|
|
|
| 123 |
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
|
|
|
| 124 |
|
| 125 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
| 126 |
final_label = max(boosted, key=boosted.get)
|
| 127 |
final_confidence = round(boosted[final_label], 3)
|
| 128 |
|
|
|
|
| 129 |
lower_text = combined_text.lower()
|
| 130 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
| 131 |
|
|
|
|
| 136 |
return {
|
| 137 |
"detected_language": detected_lang,
|
| 138 |
"text_used_for_classification": combined_text,
|
| 139 |
+
"original_probabilities": {
|
| 140 |
+
k: round(v, 3) for k, v in original_probs.items()
|
| 141 |
+
},
|
| 142 |
+
"boosted_probabilities": {
|
| 143 |
+
k: round(v, 3) for k, v in boosted.items()
|
| 144 |
+
},
|
| 145 |
"label": final_label,
|
| 146 |
"confidence": final_confidence,
|
| 147 |
"smishing_keywords_found": found_smishing,
|
|
|
|
| 149 |
"urls_found": found_urls,
|
| 150 |
}
|
| 151 |
|
| 152 |
+
#
|
| 153 |
+
# Gradio interface with dynamic visibility
|
| 154 |
+
#
|
| 155 |
+
def toggle_inputs(choice):
|
| 156 |
+
"""
|
| 157 |
+
Return updates for (text_input, image_input) based on the radio selection.
|
| 158 |
+
"""
|
| 159 |
+
if choice == "Text":
|
| 160 |
+
# Show text input, hide image
|
| 161 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 162 |
+
else:
|
| 163 |
+
# choice == "Screenshot"
|
| 164 |
+
# Hide text input, show image
|
| 165 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 166 |
+
|
| 167 |
+
with gr.Blocks() as demo:
|
| 168 |
+
gr.Markdown("## SMiShing & Scam Detector (Choose Text or Screenshot)")
|
| 169 |
+
|
| 170 |
+
with gr.Row():
|
| 171 |
+
input_type = gr.Radio(
|
| 172 |
+
choices=["Text", "Screenshot"],
|
| 173 |
+
value="Text",
|
| 174 |
+
label="Choose Input Type"
|
| 175 |
)
|
| 176 |
+
|
| 177 |
+
text_input = gr.Textbox(
|
| 178 |
+
lines=3,
|
| 179 |
+
label="Paste Suspicious SMS Text",
|
| 180 |
+
placeholder="Type or paste the message here...",
|
| 181 |
+
visible=True # default
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
image_input = gr.Image(
|
| 185 |
+
type="pil",
|
| 186 |
+
label="Upload Screenshot",
|
| 187 |
+
visible=False # hidden by default
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Whenever input_type changes, toggle which input is visible
|
| 191 |
+
input_type.change(
|
| 192 |
+
fn=toggle_inputs,
|
| 193 |
+
inputs=input_type,
|
| 194 |
+
outputs=[text_input, image_input],
|
| 195 |
+
queue=False
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Button to run classification
|
| 199 |
+
analyze_btn = gr.Button("Classify")
|
| 200 |
+
output_json = gr.JSON(label="Result")
|
| 201 |
+
|
| 202 |
+
# On button click, call the smishing_detector
|
| 203 |
+
analyze_btn.click(
|
| 204 |
+
fn=smishing_detector,
|
| 205 |
+
inputs=[input_type, text_input, image_input],
|
| 206 |
+
outputs=output_json
|
| 207 |
+
)
|
| 208 |
|
| 209 |
if __name__ == "__main__":
|
| 210 |
demo.launch()
|
app.py.working_ocr_selection
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pytesseract
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import re
|
| 6 |
+
from langdetect import detect
|
| 7 |
+
from deep_translator import GoogleTranslator
|
| 8 |
+
|
| 9 |
+
# Translator instance
|
| 10 |
+
translator = GoogleTranslator(source="auto", target="es")
|
| 11 |
+
|
| 12 |
+
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
|
| 13 |
+
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
| 14 |
+
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
| 15 |
+
|
| 16 |
+
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
|
| 17 |
+
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
| 18 |
+
|
| 19 |
+
# 2. Zero-Shot Classification Pipeline
|
| 20 |
+
model_name = "joeddav/xlm-roberta-large-xnli"
|
| 21 |
+
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
+
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_keywords_by_language(text: str):
|
| 26 |
+
"""
|
| 27 |
+
Detect language using `langdetect` and translate keywords if needed.
|
| 28 |
+
"""
|
| 29 |
+
snippet = text[:200] # Use a snippet for detection
|
| 30 |
+
try:
|
| 31 |
+
detected_lang = detect(snippet)
|
| 32 |
+
except Exception:
|
| 33 |
+
detected_lang = "en" # Default to English if detection fails
|
| 34 |
+
|
| 35 |
+
if detected_lang == "es":
|
| 36 |
+
smishing_in_spanish = [
|
| 37 |
+
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
| 38 |
+
]
|
| 39 |
+
other_scam_in_spanish = [
|
| 40 |
+
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
|
| 41 |
+
]
|
| 42 |
+
return smishing_in_spanish, other_scam_in_spanish, "es"
|
| 43 |
+
else:
|
| 44 |
+
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def boost_probabilities(probabilities: dict, text: str):
|
| 48 |
+
"""
|
| 49 |
+
Boost probabilities based on keyword matches and presence of URLs.
|
| 50 |
+
"""
|
| 51 |
+
lower_text = text.lower()
|
| 52 |
+
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
|
| 53 |
+
|
| 54 |
+
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
| 55 |
+
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
| 56 |
+
|
| 57 |
+
# Example: 30% per found keyword
|
| 58 |
+
smishing_boost = 0.30 * smishing_count
|
| 59 |
+
other_scam_boost = 0.30 * other_scam_count
|
| 60 |
+
|
| 61 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 62 |
+
if found_urls:
|
| 63 |
+
# 35% boost for Smishing if there's a URL
|
| 64 |
+
smishing_boost += 0.35
|
| 65 |
+
|
| 66 |
+
p_smishing = probabilities.get("SMiShing", 0.0)
|
| 67 |
+
p_other_scam = probabilities.get("Other Scam", 0.0)
|
| 68 |
+
p_legit = probabilities.get("Legitimate", 1.0)
|
| 69 |
+
|
| 70 |
+
p_smishing += smishing_boost
|
| 71 |
+
p_other_scam += other_scam_boost
|
| 72 |
+
p_legit -= (smishing_boost + other_scam_boost)
|
| 73 |
+
|
| 74 |
+
# Clamp to 0
|
| 75 |
+
p_smishing = max(p_smishing, 0.0)
|
| 76 |
+
p_other_scam = max(p_other_scam, 0.0)
|
| 77 |
+
p_legit = max(p_legit, 0.0)
|
| 78 |
+
|
| 79 |
+
# Re-normalize
|
| 80 |
+
total = p_smishing + p_other_scam + p_legit
|
| 81 |
+
if total > 0:
|
| 82 |
+
p_smishing /= total
|
| 83 |
+
p_other_scam /= total
|
| 84 |
+
p_legit /= total
|
| 85 |
+
else:
|
| 86 |
+
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
| 87 |
+
|
| 88 |
+
return {
|
| 89 |
+
"SMiShing": p_smishing,
|
| 90 |
+
"Other Scam": p_other_scam,
|
| 91 |
+
"Legitimate": p_legit,
|
| 92 |
+
"detected_lang": detected_lang
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def smishing_detector(input_type, text, image):
|
| 97 |
+
"""
|
| 98 |
+
Main detection function:
|
| 99 |
+
- If input_type == "Text": use `text` as the message
|
| 100 |
+
- If input_type == "Screenshot": use OCR on `image` to get text
|
| 101 |
+
"""
|
| 102 |
+
if input_type == "Text":
|
| 103 |
+
# Use the pasted text
|
| 104 |
+
combined_text = text.strip() if text else ""
|
| 105 |
+
else:
|
| 106 |
+
# input_type == "Screenshot"
|
| 107 |
+
if image is not None:
|
| 108 |
+
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
| 109 |
+
combined_text = ocr_text.strip()
|
| 110 |
+
else:
|
| 111 |
+
combined_text = ""
|
| 112 |
+
|
| 113 |
+
if not combined_text:
|
| 114 |
+
return {
|
| 115 |
+
"text_used_for_classification": "(none)",
|
| 116 |
+
"label": "No text provided",
|
| 117 |
+
"confidence": 0.0,
|
| 118 |
+
"keywords_found": [],
|
| 119 |
+
"urls_found": []
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
# Zero-shot classification
|
| 123 |
+
result = classifier(
|
| 124 |
+
sequences=combined_text,
|
| 125 |
+
candidate_labels=CANDIDATE_LABELS,
|
| 126 |
+
hypothesis_template="This message is {}."
|
| 127 |
+
)
|
| 128 |
+
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
| 129 |
+
|
| 130 |
+
# Boost logic
|
| 131 |
+
boosted = boost_probabilities(original_probs, combined_text)
|
| 132 |
+
|
| 133 |
+
# Convert to float
|
| 134 |
+
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
| 135 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
| 136 |
+
|
| 137 |
+
# Final classification
|
| 138 |
+
final_label = max(boosted, key=boosted.get)
|
| 139 |
+
final_confidence = round(boosted[final_label], 3)
|
| 140 |
+
|
| 141 |
+
# For display
|
| 142 |
+
lower_text = combined_text.lower()
|
| 143 |
+
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
| 144 |
+
|
| 145 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 146 |
+
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
| 147 |
+
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
| 148 |
+
|
| 149 |
+
return {
|
| 150 |
+
"detected_language": detected_lang,
|
| 151 |
+
"text_used_for_classification": combined_text,
|
| 152 |
+
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
|
| 153 |
+
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
|
| 154 |
+
"label": final_label,
|
| 155 |
+
"confidence": final_confidence,
|
| 156 |
+
"smishing_keywords_found": found_smishing,
|
| 157 |
+
"other_scam_keywords_found": found_other_scam,
|
| 158 |
+
"urls_found": found_urls,
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# Create a Radio for user choice + text input + image input
|
| 163 |
+
demo = gr.Interface(
|
| 164 |
+
fn=smishing_detector,
|
| 165 |
+
inputs=[
|
| 166 |
+
gr.Radio(
|
| 167 |
+
choices=["Text", "Screenshot"],
|
| 168 |
+
label="Choose input type",
|
| 169 |
+
value="Text", # default
|
| 170 |
+
info="Select 'Text' to paste a message, or 'Screenshot' to upload an image."
|
| 171 |
+
),
|
| 172 |
+
gr.Textbox(
|
| 173 |
+
lines=3,
|
| 174 |
+
label="Paste Suspicious SMS Text",
|
| 175 |
+
placeholder="Type or paste the message here..."
|
| 176 |
+
),
|
| 177 |
+
gr.Image(
|
| 178 |
+
type="pil",
|
| 179 |
+
label="Upload a Screenshot",
|
| 180 |
+
)
|
| 181 |
+
],
|
| 182 |
+
outputs="json",
|
| 183 |
+
title="SMiShing & Scam Detector",
|
| 184 |
+
description="""
|
| 185 |
+
Select "Text" or "Screenshot" above.
|
| 186 |
+
- If "Text", only use the textbox.
|
| 187 |
+
- If "Screenshot", only upload an image.
|
| 188 |
+
The app will classify the message as SMiShing, Other Scam, or Legitimate.
|
| 189 |
+
""",
|
| 190 |
+
allow_flagging="never"
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
if __name__ == "__main__":
|
| 194 |
+
demo.launch()
|