Spaces:
Sleeping
Sleeping
hackerbyhobby
commited on
added initial app
Browse files
app.py
CHANGED
|
@@ -1,8 +1,154 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pytesseract
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import re
|
| 6 |
|
| 7 |
+
# 1. Load scam keywords from file
|
| 8 |
+
# Each line in 'scam_keywords.txt' is treated as a separate keyword.
|
| 9 |
+
with open("scam_keywords.txt", "r", encoding="utf-8") as f:
|
| 10 |
+
SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
| 11 |
|
| 12 |
+
# 2. Zero-Shot Classification Pipeline
|
| 13 |
+
model_name = "joeddav/xlm-roberta-large-xnli"
|
| 14 |
+
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 15 |
|
| 16 |
+
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 17 |
+
|
| 18 |
+
def keyword_and_url_boost(probabilities, text):
|
| 19 |
+
"""
|
| 20 |
+
Adjust final probabilities if certain scam-related keywords or URLs appear.
|
| 21 |
+
- probabilities: dict, label -> original probability
|
| 22 |
+
- text: the combined text from user input + OCR
|
| 23 |
+
|
| 24 |
+
Returns an updated dict of probabilities that sum to 1.
|
| 25 |
+
"""
|
| 26 |
+
lower_text = text.lower()
|
| 27 |
+
|
| 28 |
+
# 1. Check scam keywords
|
| 29 |
+
keyword_count = sum(1 for kw in SCAM_KEYWORDS if kw in lower_text)
|
| 30 |
+
keyword_boost = 0.05 * keyword_count # 5% per found keyword
|
| 31 |
+
keyword_boost = min(keyword_boost, 0.30) # cap at +30%
|
| 32 |
+
|
| 33 |
+
# 2. Check if there's any URL (simple regex for http/https)
|
| 34 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 35 |
+
url_boost = 0.0
|
| 36 |
+
if found_urls:
|
| 37 |
+
# For demonstration: a flat +10% if a URL is found
|
| 38 |
+
url_boost = 0.10
|
| 39 |
+
|
| 40 |
+
# 3. Combine total boost
|
| 41 |
+
total_boost = keyword_boost + url_boost
|
| 42 |
+
total_boost = min(total_boost, 0.40) # cap at +40%
|
| 43 |
+
|
| 44 |
+
if total_boost <= 0:
|
| 45 |
+
return probabilities # no change if no keywords/URLs found
|
| 46 |
+
|
| 47 |
+
smishing_prob = probabilities["SMiShing"]
|
| 48 |
+
other_scam_prob = probabilities["Other Scam"]
|
| 49 |
+
legit_prob = probabilities["Legitimate"]
|
| 50 |
+
|
| 51 |
+
# 4. Distribute the total boost equally to "SMiShing" and "Other Scam"
|
| 52 |
+
half_boost = total_boost / 2.0
|
| 53 |
+
smishing_boosted = smishing_prob + half_boost
|
| 54 |
+
other_scam_boosted = other_scam_prob + half_boost
|
| 55 |
+
legit_boosted = legit_prob
|
| 56 |
+
|
| 57 |
+
# 5. Re-normalize so they sum to 1
|
| 58 |
+
total = smishing_boosted + other_scam_boosted + legit_boosted
|
| 59 |
+
if total > 0:
|
| 60 |
+
smishing_final = smishing_boosted / total
|
| 61 |
+
other_scam_final = other_scam_boosted / total
|
| 62 |
+
legit_final = legit_boosted / total
|
| 63 |
+
else:
|
| 64 |
+
smishing_final = 0.0
|
| 65 |
+
other_scam_final = 0.0
|
| 66 |
+
legit_final = 1.0
|
| 67 |
+
|
| 68 |
+
return {
|
| 69 |
+
"SMiShing": smishing_final,
|
| 70 |
+
"Other Scam": other_scam_final,
|
| 71 |
+
"Legitimate": legit_final
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
def smishing_detector(text, image):
|
| 75 |
+
"""
|
| 76 |
+
1. Extract text from the image (OCR) if provided.
|
| 77 |
+
2. Combine with user-entered text.
|
| 78 |
+
3. Zero-shot classification -> base probabilities.
|
| 79 |
+
4. Keyword + URL boost -> adjusted probabilities.
|
| 80 |
+
5. Return final label, confidence, etc.
|
| 81 |
+
"""
|
| 82 |
+
# Step 1: OCR if there's an image
|
| 83 |
+
combined_text = text if text else ""
|
| 84 |
+
if image is not None:
|
| 85 |
+
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
| 86 |
+
combined_text += " " + ocr_text
|
| 87 |
+
|
| 88 |
+
# Clean text
|
| 89 |
+
combined_text = combined_text.strip()
|
| 90 |
+
if not combined_text:
|
| 91 |
+
return {
|
| 92 |
+
"text_used_for_classification": "(none)",
|
| 93 |
+
"label": "No text provided",
|
| 94 |
+
"confidence": 0.0,
|
| 95 |
+
"keywords_found": [],
|
| 96 |
+
"urls_found": []
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
# Step 2: Zero-shot classification
|
| 100 |
+
result = classifier(
|
| 101 |
+
sequences=combined_text,
|
| 102 |
+
candidate_labels=CANDIDATE_LABELS,
|
| 103 |
+
hypothesis_template="This message is {}."
|
| 104 |
+
)
|
| 105 |
+
original_probs = dict(zip(result["labels"], result["scores"]))
|
| 106 |
+
|
| 107 |
+
# Step 3: Keyword + URL boost
|
| 108 |
+
boosted_probs = keyword_and_url_boost(original_probs, combined_text)
|
| 109 |
+
|
| 110 |
+
# Step 4: Pick final label after boost
|
| 111 |
+
final_label = max(boosted_probs, key=boosted_probs.get)
|
| 112 |
+
final_confidence = round(boosted_probs[final_label], 3)
|
| 113 |
+
|
| 114 |
+
# Step 5: Identify which keywords and URLs were found
|
| 115 |
+
lower_text = combined_text.lower()
|
| 116 |
+
found_keywords = [kw for kw in SCAM_KEYWORDS if kw in lower_text]
|
| 117 |
+
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"text_used_for_classification": combined_text,
|
| 121 |
+
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
|
| 122 |
+
"boosted_probabilities": {k: round(v, 3) for k, v in boosted_probs.items()},
|
| 123 |
+
"label": final_label,
|
| 124 |
+
"confidence": final_confidence,
|
| 125 |
+
"keywords_found": found_keywords,
|
| 126 |
+
"urls_found": found_urls,
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
demo = gr.Interface(
|
| 130 |
+
fn=smishing_detector,
|
| 131 |
+
inputs=[
|
| 132 |
+
gr.Textbox(
|
| 133 |
+
lines=3,
|
| 134 |
+
label="Paste Suspicious SMS Text (English/Spanish)",
|
| 135 |
+
placeholder="Type or paste the message here..."
|
| 136 |
+
),
|
| 137 |
+
gr.Image(
|
| 138 |
+
type="pil",
|
| 139 |
+
label="Or Upload a Screenshot (Optional)"
|
| 140 |
+
)
|
| 141 |
+
],
|
| 142 |
+
outputs="json",
|
| 143 |
+
title="SMiShing & Scam Detector (Keyword + URL Boost)",
|
| 144 |
+
description="""
|
| 145 |
+
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
| 146 |
+
(joeddav/xlm-roberta-large-xnli). It also checks for certain "scam keywords" (loaded from a file)
|
| 147 |
+
and any URLs, boosting the probability of a scam label if found.
|
| 148 |
+
Supports English & Spanish text (OCR included).
|
| 149 |
+
""",
|
| 150 |
+
allow_flagging="never"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
demo.launch()
|