Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,374 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
yield response
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
|
| 4 |
+
try:
|
| 5 |
+
from unsloth import FastLanguageModel
|
| 6 |
+
except ImportError:
|
| 7 |
+
print("Unsloth๊ฐ ์ค์น๋์ด ์์ง ์์ต๋๋ค. ์ค์น ์ค...")
|
| 8 |
+
import subprocess
|
| 9 |
+
subprocess.check_call(["pip", "install", "unsloth"])
|
| 10 |
+
from unsloth import FastLanguageModel
|
| 11 |
|
| 12 |
+
# Hugging Face์ ์
๋ก๋๋ ๋ชจ๋ธ ์ฌ์ฉ
|
| 13 |
+
MODEL_NAME = "huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko"
|
| 14 |
|
| 15 |
+
print(f"Loading model from Hugging Face: {MODEL_NAME}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Unsloth๋ฅผ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋
|
| 18 |
+
try:
|
| 19 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 20 |
+
model_name=MODEL_NAME,
|
| 21 |
+
max_seq_length=2048,
|
| 22 |
+
dtype=None, # ์๋ ๊ฐ์ง
|
| 23 |
+
load_in_4bit=True, # 4๋นํธ ์์ํ ์ฌ์ฉ
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# ์ถ๋ก ๋ชจ๋๋ก ์ค์
|
| 27 |
+
FastLanguageModel.for_inference(model)
|
| 28 |
+
print("Model loaded successfully with Unsloth!")
|
| 29 |
+
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error loading model with Unsloth: {e}")
|
| 32 |
+
print("\n๋ชจ๋ธ์ด Hugging Face์ ์ ๋๋ก ์
๋ก๋๋์ง ์์์ ์ ์์ต๋๋ค.")
|
| 33 |
+
print("๋ก์ปฌ ๋ชจ๋ธ์ ์ฌ์ฉํ๊ฑฐ๋ ๋ชจ๋ธ์ ๋ค์ ์
๋ก๋ํด์ฃผ์ธ์.")
|
| 34 |
+
raise
|
| 35 |
|
| 36 |
+
# Example databases and questions
|
| 37 |
+
examples = [
|
| 38 |
+
{
|
| 39 |
+
"db_id": "department_management",
|
| 40 |
+
"question": "๊ฐ ๋ถ์๋ณ ์ง์ ์๋ฅผ ๋ณด์ฌ์ฃผ์ธ์.",
|
| 41 |
+
"schema": """๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 42 |
+
ํ
์ด๋ธ: department
|
| 43 |
+
์ปฌ๋ผ:
|
| 44 |
+
- Department_ID (number) (๊ธฐ๋ณธ ํค)
|
| 45 |
+
- Name (text)
|
| 46 |
+
- Creation (text)
|
| 47 |
+
- Ranking (number)
|
| 48 |
+
- Budget_in_Billions (number)
|
| 49 |
+
- Num_Employees (number)
|
| 50 |
+
ํ
์ด๋ธ: head
|
| 51 |
+
์ปฌ๋ผ:
|
| 52 |
+
- head_ID (number) (๊ธฐ๋ณธ ํค)
|
| 53 |
+
- name (text)
|
| 54 |
+
- born_state (text)
|
| 55 |
+
- age (number)
|
| 56 |
+
ํ
์ด๋ธ: management
|
| 57 |
+
์ปฌ๋ผ:
|
| 58 |
+
- department_ID (number) (๊ธฐ๋ณธ ํค)
|
| 59 |
+
- head_ID (number)
|
| 60 |
+
- temporary_acting (text)
|
| 61 |
|
| 62 |
+
์ธ๋ ํค ๊ด๊ณ:
|
| 63 |
+
- management.head_ID โ head.head_ID
|
| 64 |
+
- management.department_ID โ department.Department_ID"""
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"db_id": "concert_singer",
|
| 68 |
+
"question": "๊ฐ์ฅ ๋ง์ ์ฝ์ํธ๋ฅผ ์ฐ ๊ฐ์๋ ๋๊ตฌ์ธ๊ฐ์?",
|
| 69 |
+
"schema": """๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 70 |
+
ํ
์ด๋ธ: singer
|
| 71 |
+
์ปฌ๋ผ:
|
| 72 |
+
- Singer_ID (number) (๊ธฐ๋ณธ ํค)
|
| 73 |
+
- Name (text)
|
| 74 |
+
- Country (text)
|
| 75 |
+
- Song_Name (text)
|
| 76 |
+
- Song_release_year (text)
|
| 77 |
+
- Age (number)
|
| 78 |
+
- Is_male (text)
|
| 79 |
+
ํ
์ด๋ธ: concert
|
| 80 |
+
์ปฌ๋ผ:
|
| 81 |
+
- concert_ID (number) (๊ธฐ๋ณธ ํค)
|
| 82 |
+
- concert_Name (text)
|
| 83 |
+
- Theme (text)
|
| 84 |
+
- Stadium_ID (number)
|
| 85 |
+
- Year (text)
|
| 86 |
+
ํ
์ด๋ธ: singer_in_concert
|
| 87 |
+
์ปฌ๋ผ:
|
| 88 |
+
- concert_ID (number)
|
| 89 |
+
- Singer_ID (number)
|
| 90 |
|
| 91 |
+
์ธ๋ ํค ๊ด๊ณ:
|
| 92 |
+
- singer_in_concert.Singer_ID โ singer.Singer_ID
|
| 93 |
+
- singer_in_concert.concert_ID โ concert.concert_ID"""
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"db_id": "pets_1",
|
| 97 |
+
"question": "๊ฐ์ฅ ๋์ด๊ฐ ๋ง์ ๊ฐ์ ์ด๋ฆ์ ๋ฌด์์ธ๊ฐ์?",
|
| 98 |
+
"schema": """๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 99 |
+
ํ
์ด๋ธ: Student
|
| 100 |
+
์ปฌ๋ผ:
|
| 101 |
+
- StuID (number) (๊ธฐ๋ณธ ํค)
|
| 102 |
+
- LName (text)
|
| 103 |
+
- Fname (text)
|
| 104 |
+
- Age (number)
|
| 105 |
+
- Sex (text)
|
| 106 |
+
- Major (number)
|
| 107 |
+
- Advisor (number)
|
| 108 |
+
- city_code (text)
|
| 109 |
+
ํ
์ด๋ธ: Has_Pet
|
| 110 |
+
์ปฌ๋ผ:
|
| 111 |
+
- StuID (number)
|
| 112 |
+
- PetID (number)
|
| 113 |
+
ํ
์ด๋ธ: Pets
|
| 114 |
+
์ปฌ๋ผ:
|
| 115 |
+
- PetID (number) (๊ธฐ๋ณธ ํค)
|
| 116 |
+
- PetType (text)
|
| 117 |
+
- pet_age (number)
|
| 118 |
+
- weight (number)"""
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"db_id": "car_1",
|
| 122 |
+
"question": "๋ฏธ๊ตญ์ฐ ์๋์ฐจ ์ค ๊ฐ์ฅ ๋น ๋ฅธ ์๋์ฐจ๋ ๋ฌด์์ธ๊ฐ์?",
|
| 123 |
+
"schema": """๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 124 |
+
ํ
์ด๋ธ: continents
|
| 125 |
+
์ปฌ๋ผ:
|
| 126 |
+
- ContId (number) (๊ธฐ๋ณธ ํค)
|
| 127 |
+
- Continent (text)
|
| 128 |
+
ํ
์ด๋ธ: countries
|
| 129 |
+
์ปฌ๋ผ:
|
| 130 |
+
- CountryId (number) (๊ธฐ๋ณธ ํค)
|
| 131 |
+
- CountryName (text)
|
| 132 |
+
- Continent (number)
|
| 133 |
+
ํ
์ด๋ธ: car_makers
|
| 134 |
+
์ปฌ๋ผ:
|
| 135 |
+
- Id (number) (๊ธฐ๋ณธ ํค)
|
| 136 |
+
- Maker (text)
|
| 137 |
+
- FullName (text)
|
| 138 |
+
- Country (number)
|
| 139 |
+
ํ
์ด๋ธ: model_list
|
| 140 |
+
์ปฌ๋ผ:
|
| 141 |
+
- ModelId (number) (๊ธฐ๋ณธ ํค)
|
| 142 |
+
- Maker (number)
|
| 143 |
+
- Model (text)
|
| 144 |
+
ํ
์ด๋ธ: car_names
|
| 145 |
+
์ปฌ๋ผ:
|
| 146 |
+
- MakeId (number) (๊ธฐ๋ณธ ํค)
|
| 147 |
+
- Model (text)
|
| 148 |
+
- Make (text)
|
| 149 |
+
ํ
์ด๋ธ: cars_data
|
| 150 |
+
์ปฌ๋ผ:
|
| 151 |
+
- Id (number) (๊ธฐ๋ณธ ํค)
|
| 152 |
+
- MPG (text)
|
| 153 |
+
- Cylinders (number)
|
| 154 |
+
- Edispl (text)
|
| 155 |
+
- Horsepower (text)
|
| 156 |
+
- Weight (number)
|
| 157 |
+
- Accelerate (number)
|
| 158 |
+
- Year (number)"""
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"db_id": "tvshow",
|
| 162 |
+
"question": "๊ฐ์ฅ ๋์ ํ์ ์ ๋ฐ์ TV ์ผ๋ ๋ฌด์์ธ๊ฐ์?",
|
| 163 |
+
"schema": """๋ฐ์ดํฐ๋ฒ ์ด์ค ์คํค๋ง:
|
| 164 |
+
ํ
์ด๋ธ: TV_Channel
|
| 165 |
+
์ปฌ๋ผ:
|
| 166 |
+
- id (number) (๊ธฐ๋ณธ ํค)
|
| 167 |
+
- series_name (text)
|
| 168 |
+
- Country (text)
|
| 169 |
+
- Language (text)
|
| 170 |
+
- Content (text)
|
| 171 |
+
- Pixel_aspect_ratio_PAR (text)
|
| 172 |
+
- Hight_definition_TV (text)
|
| 173 |
+
- Pay_per_view_PPV (text)
|
| 174 |
+
- Package_Option (text)
|
| 175 |
+
ํ
์ด๋ธ: TV_series
|
| 176 |
+
์ปฌ๋ผ:
|
| 177 |
+
- id (number)
|
| 178 |
+
- Episode (text)
|
| 179 |
+
- Air_Date (text)
|
| 180 |
+
- Rating (text)
|
| 181 |
+
- Share (text)
|
| 182 |
+
- 18_49_Rating_Share (text)
|
| 183 |
+
- Viewers_m (text)
|
| 184 |
+
- Weekly_Rank (number)
|
| 185 |
+
- Channel (number)
|
| 186 |
+
ํ
์ด๋ธ: Cartoon
|
| 187 |
+
์ปฌ๋ผ:
|
| 188 |
+
- id (number) (๊ธฐ๋ณธ ํค)
|
| 189 |
+
- Title (text)
|
| 190 |
+
- Directed_by (text)
|
| 191 |
+
- Written_by (text)
|
| 192 |
+
- Original_air_date (text)
|
| 193 |
+
- Production_code (number)
|
| 194 |
+
- Channel (number)"""
|
| 195 |
+
}
|
| 196 |
+
]
|
| 197 |
+
|
| 198 |
+
def generate_sql(question, db_id, schema_info):
|
| 199 |
+
"""Generate SQL query using the model."""
|
| 200 |
+
# Create prompt with schema
|
| 201 |
+
prompt = f"""๋น์ ์ ์์ฐ์ด ์ง๋ฌธ์ SQL ์ฟผ๋ฆฌ๋ก ๋ณํํ๋ ์ ๋ฌธ AI ์ด์์คํดํธ์
๋๋ค. ์ฌ์ฉ์๊ฐ ๋ฐ์ดํฐ๋ฒ ์ด์ค์์ ์ ๋ณด๋ฅผ ์ป๊ธฐ ์ํด ์ผ์ ์ธ์ด๋ก ์ง๋ฌธํ๋ฉด, ๋น์ ์ ํด๋น ์ง๋ฌธ์ ์ ํํ SQL ์ฟผ๋ฆฌ๋ก ๋ณํํด์ผ ํฉ๋๋ค.
|
| 202 |
|
| 203 |
+
{schema_info}
|
|
|
|
| 204 |
|
| 205 |
+
์ง๋ฌธ: {question}
|
| 206 |
+
SQL:"""
|
| 207 |
+
|
| 208 |
+
# ์ฑํ
๋ฉ์์ง๋ก ํฌ๋งทํ
|
| 209 |
+
messages = [{"role": "user", "content": prompt}]
|
| 210 |
+
|
| 211 |
+
# ์ฑํ
ํ
ํ๋ฆฟ ์ ์ฉ
|
| 212 |
+
inputs = tokenizer.apply_chat_template(
|
| 213 |
+
messages,
|
| 214 |
+
tokenize=True,
|
| 215 |
+
add_generation_prompt=True,
|
| 216 |
+
return_tensors="pt"
|
| 217 |
+
).to(model.device)
|
| 218 |
+
|
| 219 |
+
# Generate
|
| 220 |
+
with torch.no_grad():
|
| 221 |
+
outputs = model.generate(
|
| 222 |
+
inputs,
|
| 223 |
+
max_new_tokens=256,
|
| 224 |
+
temperature=0.1,
|
| 225 |
+
top_p=0.95,
|
| 226 |
+
do_sample=True,
|
| 227 |
+
use_cache=True
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Decode
|
| 231 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 232 |
+
|
| 233 |
+
# Extract SQL after the prompt
|
| 234 |
+
if prompt in response:
|
| 235 |
+
sql_part = response.split(prompt)[-1].strip()
|
| 236 |
+
else:
|
| 237 |
+
sql_part = response
|
| 238 |
+
|
| 239 |
+
# Clean up the response
|
| 240 |
+
if sql_part.startswith("assistant"):
|
| 241 |
+
sql_part = sql_part[len("assistant"):].strip()
|
| 242 |
+
|
| 243 |
+
# Extract SQL query
|
| 244 |
+
lines = sql_part.split('\n')
|
| 245 |
+
sql_query = ""
|
| 246 |
+
for line in lines:
|
| 247 |
+
line = line.strip()
|
| 248 |
+
if line.lower().startswith(('select', 'with', '(select')):
|
| 249 |
+
sql_query = line
|
| 250 |
+
# Continue collecting lines until we hit a semicolon or empty line
|
| 251 |
+
for next_line in lines[lines.index(line)+1:]:
|
| 252 |
+
next_line = next_line.strip()
|
| 253 |
+
if not next_line or next_line.startswith(('์ง๋ฌธ', '๋ฐ์ดํฐ๋ฒ ์ด์ค')):
|
| 254 |
+
break
|
| 255 |
+
sql_query += " " + next_line
|
| 256 |
+
if next_line.endswith(';'):
|
| 257 |
+
break
|
| 258 |
+
break
|
| 259 |
+
|
| 260 |
+
# Clean up SQL
|
| 261 |
+
sql_query = sql_query.strip()
|
| 262 |
+
if sql_query.endswith(';'):
|
| 263 |
+
sql_query = sql_query[:-1]
|
| 264 |
+
|
| 265 |
+
return sql_query if sql_query else "SQL ์์ฑ์ ์คํจํ์ต๋๋ค."
|
| 266 |
|
| 267 |
+
def process_question(question, db_id, custom_schema=None):
|
| 268 |
+
"""Process user question and generate SQL query."""
|
| 269 |
+
if not question or not db_id:
|
| 270 |
+
return "์ง๋ฌธ๊ณผ ๋ฐ์ดํฐ๋ฒ ์ด์ค ID๋ฅผ ์
๋ ฅํด์ฃผ์ธ์."
|
| 271 |
+
|
| 272 |
+
# Use custom schema if provided, otherwise find from examples
|
| 273 |
+
if custom_schema and custom_schema.strip():
|
| 274 |
+
schema_info = custom_schema
|
| 275 |
+
else:
|
| 276 |
+
# Find schema from examples
|
| 277 |
+
schema_info = None
|
| 278 |
+
for example in examples:
|
| 279 |
+
if example["db_id"] == db_id:
|
| 280 |
+
schema_info = example["schema"]
|
| 281 |
+
break
|
| 282 |
+
|
| 283 |
+
if not schema_info:
|
| 284 |
+
return "์คํค๋ง ์ ๋ณด๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค. ์ปค์คํ
์คํค๋ง๋ฅผ ์
๋ ฅํด์ฃผ์ธ์."
|
| 285 |
+
|
| 286 |
+
# Generate SQL
|
| 287 |
+
try:
|
| 288 |
+
sql_query = generate_sql(question, db_id, schema_info)
|
| 289 |
+
return sql_query
|
| 290 |
+
except Exception as e:
|
| 291 |
+
return f"์ค๋ฅ ๋ฐ์: {str(e)}"
|
| 292 |
|
| 293 |
+
# Create Gradio interface
|
| 294 |
+
with gr.Blocks(title="Spider SQL Generator - Korean", theme=gr.themes.Soft()) as demo:
|
| 295 |
+
gr.Markdown("""
|
| 296 |
+
# ๐ท๏ธ Spider SQL Generator - Korean
|
| 297 |
+
|
| 298 |
+
ํ๊ตญ์ด ์ง๋ฌธ์ SQL ์ฟผ๋ฆฌ๋ก ๋ณํํ๋ Llama 3.1 8B ๋ชจ๋ธ์
๋๋ค.
|
| 299 |
+
|
| 300 |
+
## ๐ ์ฑ๋ฅ
|
| 301 |
+
- **Exact Match**: 42.65%
|
| 302 |
+
- **Execution Accuracy**: 65.47%
|
| 303 |
+
- **Training**: Spider ๋ฐ์ดํฐ์
(ํ๊ตญ์ด ๋ฒ์ญ)
|
| 304 |
+
""")
|
| 305 |
+
|
| 306 |
+
with gr.Row():
|
| 307 |
+
with gr.Column():
|
| 308 |
+
db_id_input = gr.Textbox(
|
| 309 |
+
label="๋ฐ์ดํฐ๋ฒ ์ด์ค ID",
|
| 310 |
+
placeholder="์: department_management",
|
| 311 |
+
value="department_management"
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
question_input = gr.Textbox(
|
| 315 |
+
label="์ง๋ฌธ (ํ๊ตญ์ด)",
|
| 316 |
+
placeholder="์: ๊ฐ ๋ถ์๋ณ ์ง์ ์๋ฅผ ๋ณด์ฌ์ฃผ์ธ์.",
|
| 317 |
+
lines=2
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
with gr.Accordion("์คํค๋ง ์ ๋ณด (์ ํ์ฌํญ)", open=False):
|
| 321 |
+
schema_input = gr.Textbox(
|
| 322 |
+
label="์ปค์คํ
์คํค๋ง",
|
| 323 |
+
placeholder="์ปค์คํ
์คํค๋ง๋ฅผ ์
๋ ฅํ์ธ์. ๋น์๋๋ฉด ์์ ์คํค๋ง๋ฅผ ์ฌ์ฉํฉ๋๋ค.",
|
| 324 |
+
lines=10
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
submit_btn = gr.Button("SQL ์์ฑ", variant="primary", size="lg")
|
| 328 |
+
|
| 329 |
+
with gr.Column():
|
| 330 |
+
output = gr.Textbox(
|
| 331 |
+
label="์์ฑ๋ SQL ์ฟผ๋ฆฌ",
|
| 332 |
+
lines=4,
|
| 333 |
+
elem_classes=["code"]
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
gr.Markdown("""
|
| 337 |
+
### ๐ก ์ฌ์ฉ ํ
|
| 338 |
+
- ๋ฐ์ดํฐ๋ฒ ์ด์ค ID๋ ์์ ์์ ์ ํํ๊ฑฐ๋ ์ง์ ์
๋ ฅํ์ธ์
|
| 339 |
+
- ์ง๋ฌธ์ ํ๊ตญ์ด๋ก ์์ฐ์ค๋ฝ๊ฒ ์์ฑํ์ธ์
|
| 340 |
+
- ์คํค๋ง ์ ๋ณด๋ ์ ํ์ฌํญ์
๋๋ค
|
| 341 |
+
""")
|
| 342 |
+
|
| 343 |
+
# Examples
|
| 344 |
+
gr.Markdown("### ๐ ์์ (ํด๋ฆญํ์ฌ ์ฌ์ฉ)")
|
| 345 |
+
gr.Examples(
|
| 346 |
+
examples=[
|
| 347 |
+
[ex["db_id"], ex["question"], ex["schema"]] for ex in examples
|
| 348 |
+
],
|
| 349 |
+
inputs=[db_id_input, question_input, schema_input],
|
| 350 |
+
outputs=output,
|
| 351 |
+
fn=process_question,
|
| 352 |
+
cache_examples=False
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Submit action
|
| 356 |
+
submit_btn.click(
|
| 357 |
+
fn=process_question,
|
| 358 |
+
inputs=[question_input, db_id_input, schema_input],
|
| 359 |
+
outputs=output
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# Model info
|
| 363 |
+
gr.Markdown(f"""
|
| 364 |
+
---
|
| 365 |
+
### ๐ค ๋ชจ๋ธ ์ ๋ณด
|
| 366 |
+
- **Hugging Face**: [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME})
|
| 367 |
+
- **Base Model**: Llama 3.1 8B
|
| 368 |
+
- **Fine-tuning**: LoRA with Unsloth
|
| 369 |
+
- **Dataset**: Spider (Korean translated)
|
| 370 |
+
""")
|
| 371 |
|
| 372 |
+
# Launch the app
|
| 373 |
if __name__ == "__main__":
|
| 374 |
+
demo.launch(share=True)
|