Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,12 +9,16 @@ from torchvision import datasets, transforms
|
|
| 9 |
import numpy as np
|
| 10 |
import threading
|
| 11 |
|
| 12 |
-
app = FastAPI(title="3D CNN Visualizer + MNIST", version="0.
|
| 13 |
|
| 14 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 15 |
MODEL = None
|
|
|
|
|
|
|
| 16 |
TRAINING_DONE = False
|
| 17 |
TRAINING_ERROR = None
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
class SimpleCNN(nn.Module):
|
|
@@ -29,8 +33,8 @@ class SimpleCNN(nn.Module):
|
|
| 29 |
"""
|
| 30 |
def __init__(self):
|
| 31 |
super().__init__()
|
| 32 |
-
self.conv1 = nn.Conv2d(1, 4, kernel_size=5)
|
| 33 |
-
self.conv2 = nn.Conv2d(4, 8, kernel_size=5)
|
| 34 |
self.pool = nn.MaxPool2d(2, 2)
|
| 35 |
self.fc = nn.Linear(8 * 4 * 4, 10)
|
| 36 |
|
|
@@ -59,14 +63,15 @@ class SimpleCNN(nn.Module):
|
|
| 59 |
return x
|
| 60 |
|
| 61 |
|
| 62 |
-
def
|
| 63 |
-
|
|
|
|
| 64 |
try:
|
| 65 |
transform = transforms.ToTensor()
|
| 66 |
train_dataset = datasets.MNIST(
|
| 67 |
root="./data", train=True, download=True, transform=transform
|
| 68 |
)
|
| 69 |
-
subset_size = min(
|
| 70 |
train_subset = torch.utils.data.Subset(train_dataset, list(range(subset_size)))
|
| 71 |
loader = DataLoader(train_subset, batch_size=128, shuffle=True)
|
| 72 |
|
|
@@ -75,7 +80,7 @@ def train_model():
|
|
| 75 |
criterion = nn.CrossEntropyLoss()
|
| 76 |
|
| 77 |
model.train()
|
| 78 |
-
epochs =
|
| 79 |
for _ in range(epochs):
|
| 80 |
for images, labels in loader:
|
| 81 |
images, labels = images.to(DEVICE), labels.to(DEVICE)
|
|
@@ -86,21 +91,29 @@ def train_model():
|
|
| 86 |
optimizer.step()
|
| 87 |
|
| 88 |
model.eval()
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
TRAINING_DONE = True
|
| 91 |
except Exception as e:
|
| 92 |
TRAINING_ERROR = str(e)
|
| 93 |
TRAINING_DONE = False
|
| 94 |
|
| 95 |
|
| 96 |
-
#
|
| 97 |
-
threading.Thread(target=
|
| 98 |
|
| 99 |
|
| 100 |
class PredictRequest(BaseModel):
|
| 101 |
pixels: list[float] # 28*28 = 784
|
| 102 |
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
@app.get("/", response_class=HTMLResponse)
|
| 105 |
async def index():
|
| 106 |
return HTML_PAGE
|
|
@@ -115,6 +128,26 @@ async def status():
|
|
| 115 |
}
|
| 116 |
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
@app.post("/predict")
|
| 119 |
async def predict(req: PredictRequest):
|
| 120 |
if TRAINING_ERROR:
|
|
@@ -136,28 +169,74 @@ async def predict(req: PredictRequest):
|
|
| 136 |
|
| 137 |
arr = np.array(req.pixels, dtype=np.float32).reshape(1, 1, 28, 28)
|
| 138 |
x = torch.from_numpy(arr).to(DEVICE)
|
| 139 |
-
with torch.no_grad():
|
| 140 |
-
logits, acts = MODEL(x, return_activations=True)
|
| 141 |
-
probs = torch.softmax(logits, dim=1).cpu().numpy()[0]
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
flat = acts["flat"].cpu().numpy()[0].tolist() # [128]
|
| 148 |
|
| 149 |
predicted_class = int(probs.argmax())
|
| 150 |
|
| 151 |
return {
|
| 152 |
"predicted_class": predicted_class,
|
| 153 |
"probabilities": probs.tolist(),
|
| 154 |
-
"activations":
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
}
|
| 162 |
|
| 163 |
|
|
@@ -544,6 +623,7 @@ HTML_PAGE = r"""
|
|
| 544 |
const [statusText, setStatusText] = useState("Checking model status...");
|
| 545 |
const [lastPrediction, setLastPrediction] = useState(null);
|
| 546 |
const [padKey, setPadKey] = useState(0);
|
|
|
|
| 547 |
|
| 548 |
useEffect(() => {
|
| 549 |
audio.init();
|
|
@@ -577,13 +657,17 @@ HTML_PAGE = r"""
|
|
| 577 |
|
| 578 |
const delay = ms => new Promise(r => setTimeout(r, ms));
|
| 579 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
const run = async () => {
|
| 581 |
-
if(processing) return;
|
| 582 |
setProcessing(true);
|
| 583 |
|
| 584 |
-
|
| 585 |
-
const flat = [];
|
| 586 |
-
for(let y=0; y<28; y++) for(let x=0; x<28; x++) flat.push(inputData[y][x]);
|
| 587 |
|
| 588 |
let probs = null;
|
| 589 |
let predClass = null;
|
|
@@ -601,7 +685,8 @@ HTML_PAGE = r"""
|
|
| 601 |
acts = json.activations;
|
| 602 |
setLastPrediction({
|
| 603 |
cls: predClass,
|
| 604 |
-
conf: probs[predClass]
|
|
|
|
| 605 |
});
|
| 606 |
} else {
|
| 607 |
alert("Error: " + (json.error || "Unknown"));
|
|
@@ -615,15 +700,13 @@ HTML_PAGE = r"""
|
|
| 615 |
return;
|
| 616 |
}
|
| 617 |
|
| 618 |
-
//
|
| 619 |
-
// conv1 / pool1 / conv2 / pool2 는 그대로 사용 (depth x h x w)
|
| 620 |
const conv1 = acts.conv1 || [];
|
| 621 |
const pool1 = acts.pool1 || [];
|
| 622 |
const conv2 = acts.conv2 || [];
|
| 623 |
const pool2 = acts.pool2 || [];
|
| 624 |
-
const flatVec = acts.flat || [];
|
| 625 |
|
| 626 |
-
// flat: 1 x 8 x 16으로 reshape
|
| 627 |
const flatGrid = [];
|
| 628 |
for(let y=0; y<8; y++) {
|
| 629 |
const row = [];
|
|
@@ -633,38 +716,105 @@ HTML_PAGE = r"""
|
|
| 633 |
}
|
| 634 |
flatGrid.push(row);
|
| 635 |
}
|
| 636 |
-
const flatData = [flatGrid];
|
| 637 |
-
|
| 638 |
-
// fc: [probability] 형태로 감싸서 시각화
|
| 639 |
const fcData = [probs.map(p => [p])];
|
| 640 |
|
| 641 |
-
// 3) 단계별로 activations 상태 업데이트 (애니메이션)
|
| 642 |
setActivations(prev => ({...prev, input: [inputData]}));
|
| 643 |
-
setStep(0); audio.playStep(0); await delay(
|
| 644 |
|
| 645 |
setActivations(prev => ({...prev, conv1}));
|
| 646 |
-
setStep(1); audio.playStep(1); await delay(
|
| 647 |
|
| 648 |
setActivations(prev => ({...prev, pool1}));
|
| 649 |
-
setStep(2); audio.playStep(2); await delay(
|
| 650 |
|
| 651 |
setActivations(prev => ({...prev, conv2}));
|
| 652 |
-
setStep(3); audio.playStep(3); await delay(
|
| 653 |
|
| 654 |
setActivations(prev => ({...prev, pool2}));
|
| 655 |
-
setStep(4); audio.playStep(4); await delay(
|
| 656 |
|
| 657 |
setActivations(prev => ({...prev, flat: flatData}));
|
| 658 |
-
setStep(5); audio.playStep(5); await delay(
|
| 659 |
|
| 660 |
setActivations(prev => ({...prev, fc: fcData}));
|
| 661 |
setStep(6); audio.playStep(6);
|
| 662 |
|
| 663 |
-
await delay(
|
| 664 |
setProcessing(false);
|
| 665 |
setStep(-1);
|
| 666 |
};
|
| 667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
return (
|
| 669 |
<div className="w-full h-screen relative bg-black font-mono">
|
| 670 |
<Canvas shadows camera={{ position: [25, 10, 5], fov: 45 }}>
|
|
@@ -692,7 +842,7 @@ HTML_PAGE = r"""
|
|
| 692 |
<Cpu className="text-neon-green animate-pulse" /> DEEP <span className="text-neon-green">CNN</span>
|
| 693 |
</h1>
|
| 694 |
<div className="text-xs text-green-400 mt-2 flex items-center gap-2">
|
| 695 |
-
<Activity size={12} /> {processing ? "PROCESSING
|
| 696 |
</div>
|
| 697 |
<div className="text-[10px] text-green-500 mt-1">{statusText}</div>
|
| 698 |
{lastPrediction && (
|
|
@@ -715,15 +865,43 @@ HTML_PAGE = r"""
|
|
| 715 |
<div className="text-xs font-bold tracking-widest flex items-center gap-2">
|
| 716 |
<Scan size={14} /> INPUT SENSOR
|
| 717 |
</div>
|
| 718 |
-
<button onClick={reset} disabled={processing} className="hover:text-white transition-colors">
|
| 719 |
<RotateCcw size={16} />
|
| 720 |
</button>
|
| 721 |
</div>
|
| 722 |
-
<DrawingPad key={padKey} data={inputData} onChange={setInputData} disabled={processing} />
|
| 723 |
-
<button onClick={run} disabled={processing} className="w-full mt-4 py-3 rounded btn-holo flex justify-center items-center gap-2 font-bold transition-all">
|
| 724 |
-
{processing ? <Activity className="animate-spin" size={18} /> : <Play size={18} fill="currentColor" />}
|
| 725 |
-
{processing ? '
|
| 726 |
</button>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
</div>
|
| 728 |
|
| 729 |
<div className="hud-panel p-5 hidden md:block rounded-t-xl min-w-[260px] border-b-0">
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import threading
|
| 11 |
|
| 12 |
+
app = FastAPI(title="3D CNN Visualizer + MNIST + Online Learning", version="0.3.0")
|
| 13 |
|
| 14 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
MODEL = None
|
| 17 |
+
OPTIMIZER = None
|
| 18 |
+
CRITERION = None
|
| 19 |
TRAINING_DONE = False
|
| 20 |
TRAINING_ERROR = None
|
| 21 |
+
MODEL_LOCK = threading.Lock()
|
| 22 |
|
| 23 |
|
| 24 |
class SimpleCNN(nn.Module):
|
|
|
|
| 33 |
"""
|
| 34 |
def __init__(self):
|
| 35 |
super().__init__()
|
| 36 |
+
self.conv1 = nn.Conv2d(1, 4, kernel_size=5)
|
| 37 |
+
self.conv2 = nn.Conv2d(4, 8, kernel_size=5)
|
| 38 |
self.pool = nn.MaxPool2d(2, 2)
|
| 39 |
self.fc = nn.Linear(8 * 4 * 4, 10)
|
| 40 |
|
|
|
|
| 63 |
return x
|
| 64 |
|
| 65 |
|
| 66 |
+
def train_model_initial():
|
| 67 |
+
"""Offline initial training on MNIST subset."""
|
| 68 |
+
global MODEL, OPTIMIZER, CRITERION, TRAINING_DONE, TRAINING_ERROR
|
| 69 |
try:
|
| 70 |
transform = transforms.ToTensor()
|
| 71 |
train_dataset = datasets.MNIST(
|
| 72 |
root="./data", train=True, download=True, transform=transform
|
| 73 |
)
|
| 74 |
+
subset_size = min(20000, len(train_dataset))
|
| 75 |
train_subset = torch.utils.data.Subset(train_dataset, list(range(subset_size)))
|
| 76 |
loader = DataLoader(train_subset, batch_size=128, shuffle=True)
|
| 77 |
|
|
|
|
| 80 |
criterion = nn.CrossEntropyLoss()
|
| 81 |
|
| 82 |
model.train()
|
| 83 |
+
epochs = 2
|
| 84 |
for _ in range(epochs):
|
| 85 |
for images, labels in loader:
|
| 86 |
images, labels = images.to(DEVICE), labels.to(DEVICE)
|
|
|
|
| 91 |
optimizer.step()
|
| 92 |
|
| 93 |
model.eval()
|
| 94 |
+
with MODEL_LOCK:
|
| 95 |
+
MODEL = model
|
| 96 |
+
OPTIMIZER = optimizer
|
| 97 |
+
CRITERION = criterion
|
| 98 |
TRAINING_DONE = True
|
| 99 |
except Exception as e:
|
| 100 |
TRAINING_ERROR = str(e)
|
| 101 |
TRAINING_DONE = False
|
| 102 |
|
| 103 |
|
| 104 |
+
# start initial training in background
|
| 105 |
+
threading.Thread(target=train_model_initial, daemon=True).start()
|
| 106 |
|
| 107 |
|
| 108 |
class PredictRequest(BaseModel):
|
| 109 |
pixels: list[float] # 28*28 = 784
|
| 110 |
|
| 111 |
|
| 112 |
+
class FeedbackRequest(BaseModel):
|
| 113 |
+
pixels: list[float] # 28*28
|
| 114 |
+
label: int # 0~9
|
| 115 |
+
|
| 116 |
+
|
| 117 |
@app.get("/", response_class=HTMLResponse)
|
| 118 |
async def index():
|
| 119 |
return HTML_PAGE
|
|
|
|
| 128 |
}
|
| 129 |
|
| 130 |
|
| 131 |
+
def _forward_with_activations(x_tensor: torch.Tensor):
|
| 132 |
+
"""Run model forward and return probs + activations as python lists."""
|
| 133 |
+
logits, acts = MODEL(x_tensor, return_activations=True)
|
| 134 |
+
probs = torch.softmax(logits, dim=1).cpu().numpy()[0]
|
| 135 |
+
|
| 136 |
+
conv1 = acts["conv1"].detach().cpu().numpy()[0].tolist() # [4,24,24]
|
| 137 |
+
pool1 = acts["pool1"].detach().cpu().numpy()[0].tolist() # [4,12,12]
|
| 138 |
+
conv2 = acts["conv2"].detach().cpu().numpy()[0].tolist() # [8,8,8]
|
| 139 |
+
pool2 = acts["pool2"].detach().cpu().numpy()[0].tolist() # [8,4,4]
|
| 140 |
+
flat = acts["flat"].detach().cpu().numpy()[0].tolist() # [128]
|
| 141 |
+
|
| 142 |
+
return probs, {
|
| 143 |
+
"conv1": conv1,
|
| 144 |
+
"pool1": pool1,
|
| 145 |
+
"conv2": conv2,
|
| 146 |
+
"pool2": pool2,
|
| 147 |
+
"flat": flat,
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
|
| 151 |
@app.post("/predict")
|
| 152 |
async def predict(req: PredictRequest):
|
| 153 |
if TRAINING_ERROR:
|
|
|
|
| 169 |
|
| 170 |
arr = np.array(req.pixels, dtype=np.float32).reshape(1, 1, 28, 28)
|
| 171 |
x = torch.from_numpy(arr).to(DEVICE)
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
with MODEL_LOCK:
|
| 174 |
+
MODEL.eval()
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
probs, acts = _forward_with_activations(x)
|
|
|
|
| 177 |
|
| 178 |
predicted_class = int(probs.argmax())
|
| 179 |
|
| 180 |
return {
|
| 181 |
"predicted_class": predicted_class,
|
| 182 |
"probabilities": probs.tolist(),
|
| 183 |
+
"activations": acts,
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
@app.post("/feedback")
|
| 188 |
+
async def feedback(req: FeedbackRequest):
|
| 189 |
+
"""Online learning: single-sample update with user-labeled digit."""
|
| 190 |
+
if TRAINING_ERROR:
|
| 191 |
+
return JSONResponse(
|
| 192 |
+
status_code=500,
|
| 193 |
+
content={"error": "Training failed", "detail": TRAINING_ERROR},
|
| 194 |
+
)
|
| 195 |
+
if not TRAINING_DONE or MODEL is None or OPTIMIZER is None or CRITERION is None:
|
| 196 |
+
return JSONResponse(
|
| 197 |
+
status_code=503,
|
| 198 |
+
content={"error": "Model not ready yet."},
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
if len(req.pixels) != 28 * 28:
|
| 202 |
+
return JSONResponse(
|
| 203 |
+
status_code=400,
|
| 204 |
+
content={"error": "pixels must have length 784 (28x28)"},
|
| 205 |
+
)
|
| 206 |
+
if not (0 <= req.label <= 9):
|
| 207 |
+
return JSONResponse(
|
| 208 |
+
status_code=400,
|
| 209 |
+
content={"error": "label must be between 0 and 9"},
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
arr = np.array(req.pixels, dtype=np.float32).reshape(1, 1, 28, 28)
|
| 213 |
+
x = torch.from_numpy(arr).to(DEVICE)
|
| 214 |
+
y = torch.tensor([req.label], dtype=torch.long, device=DEVICE)
|
| 215 |
+
|
| 216 |
+
with MODEL_LOCK:
|
| 217 |
+
MODEL.train()
|
| 218 |
+
loss_val = None
|
| 219 |
+
# do a few small gradient steps on this sample
|
| 220 |
+
for _ in range(3):
|
| 221 |
+
OPTIMIZER.zero_grad()
|
| 222 |
+
logits = MODEL(x)
|
| 223 |
+
loss = CRITERION(logits, y)
|
| 224 |
+
loss.backward()
|
| 225 |
+
OPTIMIZER.step()
|
| 226 |
+
loss_val = float(loss.item())
|
| 227 |
+
MODEL.eval()
|
| 228 |
+
# re-run forward to get updated prediction & activations
|
| 229 |
+
with torch.no_grad():
|
| 230 |
+
probs, acts = _forward_with_activations(x)
|
| 231 |
+
|
| 232 |
+
predicted_class = int(probs.argmax())
|
| 233 |
+
|
| 234 |
+
return {
|
| 235 |
+
"status": "ok",
|
| 236 |
+
"loss": loss_val,
|
| 237 |
+
"predicted_class": predicted_class,
|
| 238 |
+
"probabilities": probs.tolist(),
|
| 239 |
+
"activations": acts,
|
| 240 |
}
|
| 241 |
|
| 242 |
|
|
|
|
| 623 |
const [statusText, setStatusText] = useState("Checking model status...");
|
| 624 |
const [lastPrediction, setLastPrediction] = useState(null);
|
| 625 |
const [padKey, setPadKey] = useState(0);
|
| 626 |
+
const [feedbackBusy, setFeedbackBusy] = useState(false);
|
| 627 |
|
| 628 |
useEffect(() => {
|
| 629 |
audio.init();
|
|
|
|
| 657 |
|
| 658 |
const delay = ms => new Promise(r => setTimeout(r, ms));
|
| 659 |
|
| 660 |
+
const flattenInput = (grid) => {
|
| 661 |
+
const flat = [];
|
| 662 |
+
for(let y=0; y<28; y++) for(let x=0; x<28; x++) flat.push(grid[y][x]);
|
| 663 |
+
return flat;
|
| 664 |
+
};
|
| 665 |
+
|
| 666 |
const run = async () => {
|
| 667 |
+
if(processing || feedbackBusy) return;
|
| 668 |
setProcessing(true);
|
| 669 |
|
| 670 |
+
const flat = flattenInput(inputData);
|
|
|
|
|
|
|
| 671 |
|
| 672 |
let probs = null;
|
| 673 |
let predClass = null;
|
|
|
|
| 685 |
acts = json.activations;
|
| 686 |
setLastPrediction({
|
| 687 |
cls: predClass,
|
| 688 |
+
conf: probs[predClass],
|
| 689 |
+
probs,
|
| 690 |
});
|
| 691 |
} else {
|
| 692 |
alert("Error: " + (json.error || "Unknown"));
|
|
|
|
| 700 |
return;
|
| 701 |
}
|
| 702 |
|
| 703 |
+
// convert activations for visualization
|
|
|
|
| 704 |
const conv1 = acts.conv1 || [];
|
| 705 |
const pool1 = acts.pool1 || [];
|
| 706 |
const conv2 = acts.conv2 || [];
|
| 707 |
const pool2 = acts.pool2 || [];
|
| 708 |
+
const flatVec = acts.flat || [];
|
| 709 |
|
|
|
|
| 710 |
const flatGrid = [];
|
| 711 |
for(let y=0; y<8; y++) {
|
| 712 |
const row = [];
|
|
|
|
| 716 |
}
|
| 717 |
flatGrid.push(row);
|
| 718 |
}
|
| 719 |
+
const flatData = [flatGrid];
|
|
|
|
|
|
|
| 720 |
const fcData = [probs.map(p => [p])];
|
| 721 |
|
|
|
|
| 722 |
setActivations(prev => ({...prev, input: [inputData]}));
|
| 723 |
+
setStep(0); audio.playStep(0); await delay(250);
|
| 724 |
|
| 725 |
setActivations(prev => ({...prev, conv1}));
|
| 726 |
+
setStep(1); audio.playStep(1); await delay(250);
|
| 727 |
|
| 728 |
setActivations(prev => ({...prev, pool1}));
|
| 729 |
+
setStep(2); audio.playStep(2); await delay(250);
|
| 730 |
|
| 731 |
setActivations(prev => ({...prev, conv2}));
|
| 732 |
+
setStep(3); audio.playStep(3); await delay(250);
|
| 733 |
|
| 734 |
setActivations(prev => ({...prev, pool2}));
|
| 735 |
+
setStep(4); audio.playStep(4); await delay(250);
|
| 736 |
|
| 737 |
setActivations(prev => ({...prev, flat: flatData}));
|
| 738 |
+
setStep(5); audio.playStep(5); await delay(250);
|
| 739 |
|
| 740 |
setActivations(prev => ({...prev, fc: fcData}));
|
| 741 |
setStep(6); audio.playStep(6);
|
| 742 |
|
| 743 |
+
await delay(1000);
|
| 744 |
setProcessing(false);
|
| 745 |
setStep(-1);
|
| 746 |
};
|
| 747 |
|
| 748 |
+
const sendFeedback = async (correctLabel) => {
|
| 749 |
+
if(!lastPrediction) return;
|
| 750 |
+
if(processing || feedbackBusy) return;
|
| 751 |
+
setFeedbackBusy(true);
|
| 752 |
+
setStatusText(`Online update with label ${correctLabel} ...`);
|
| 753 |
+
|
| 754 |
+
const flat = flattenInput(inputData);
|
| 755 |
+
|
| 756 |
+
try {
|
| 757 |
+
const res = await fetch("/feedback", {
|
| 758 |
+
method: "POST",
|
| 759 |
+
headers: { "Content-Type": "application/json" },
|
| 760 |
+
body: JSON.stringify({ pixels: flat, label: correctLabel }),
|
| 761 |
+
});
|
| 762 |
+
const json = await res.json();
|
| 763 |
+
if(!res.ok) {
|
| 764 |
+
alert("Feedback error: " + (json.error || "Unknown"));
|
| 765 |
+
setFeedbackBusy(false);
|
| 766 |
+
return;
|
| 767 |
+
}
|
| 768 |
+
|
| 769 |
+
const probs = json.probabilities;
|
| 770 |
+
const acts = json.activations;
|
| 771 |
+
const predClass = json.predicted_class;
|
| 772 |
+
|
| 773 |
+
setLastPrediction({
|
| 774 |
+
cls: predClass,
|
| 775 |
+
conf: probs[predClass],
|
| 776 |
+
probs,
|
| 777 |
+
});
|
| 778 |
+
|
| 779 |
+
// update visualization with new activations
|
| 780 |
+
const conv1 = acts.conv1 || [];
|
| 781 |
+
const pool1 = acts.pool1 || [];
|
| 782 |
+
const conv2 = acts.conv2 || [];
|
| 783 |
+
const pool2 = acts.pool2 || [];
|
| 784 |
+
const flatVec = acts.flat || [];
|
| 785 |
+
|
| 786 |
+
const flatGrid = [];
|
| 787 |
+
for(let y=0; y<8; y++) {
|
| 788 |
+
const row = [];
|
| 789 |
+
for(let x=0; x<16; x++) {
|
| 790 |
+
const idx = y * 16 + x;
|
| 791 |
+
row.push(flatVec[idx] || 0);
|
| 792 |
+
}
|
| 793 |
+
flatGrid.push(row);
|
| 794 |
+
}
|
| 795 |
+
const flatData = [flatGrid];
|
| 796 |
+
const fcData = [probs.map(p => [p])];
|
| 797 |
+
|
| 798 |
+
setActivations(prev => ({
|
| 799 |
+
...prev,
|
| 800 |
+
input: [inputData],
|
| 801 |
+
conv1,
|
| 802 |
+
pool1,
|
| 803 |
+
conv2,
|
| 804 |
+
pool2,
|
| 805 |
+
flat: flatData,
|
| 806 |
+
fc: fcData,
|
| 807 |
+
}));
|
| 808 |
+
|
| 809 |
+
setStatusText(`Online updated with label ${correctLabel} (loss ~${json.loss.toFixed(4)})`);
|
| 810 |
+
} catch (e) {
|
| 811 |
+
console.error(e);
|
| 812 |
+
alert("Feedback request failed.");
|
| 813 |
+
} finally {
|
| 814 |
+
setFeedbackBusy(false);
|
| 815 |
+
}
|
| 816 |
+
};
|
| 817 |
+
|
| 818 |
return (
|
| 819 |
<div className="w-full h-screen relative bg-black font-mono">
|
| 820 |
<Canvas shadows camera={{ position: [25, 10, 5], fov: 45 }}>
|
|
|
|
| 842 |
<Cpu className="text-neon-green animate-pulse" /> DEEP <span className="text-neon-green">CNN</span>
|
| 843 |
</h1>
|
| 844 |
<div className="text-xs text-green-400 mt-2 flex items-center gap-2">
|
| 845 |
+
<Activity size={12} /> {(processing || feedbackBusy) ? "PROCESSING / UPDATING..." : "ONLINE"}
|
| 846 |
</div>
|
| 847 |
<div className="text-[10px] text-green-500 mt-1">{statusText}</div>
|
| 848 |
{lastPrediction && (
|
|
|
|
| 865 |
<div className="text-xs font-bold tracking-widest flex items-center gap-2">
|
| 866 |
<Scan size={14} /> INPUT SENSOR
|
| 867 |
</div>
|
| 868 |
+
<button onClick={reset} disabled={processing || feedbackBusy} className="hover:text-white transition-colors">
|
| 869 |
<RotateCcw size={16} />
|
| 870 |
</button>
|
| 871 |
</div>
|
| 872 |
+
<DrawingPad key={padKey} data={inputData} onChange={setInputData} disabled={processing || feedbackBusy} />
|
| 873 |
+
<button onClick={run} disabled={processing || feedbackBusy} className="w-full mt-4 py-3 rounded btn-holo flex justify-center items-center gap-2 font-bold transition-all">
|
| 874 |
+
{(processing || feedbackBusy) ? <Activity className="animate-spin" size={18} /> : <Play size={18} fill="currentColor" />}
|
| 875 |
+
{(processing || feedbackBusy) ? 'RUNNING / UPDATING...' : 'RUN INFERENCE'}
|
| 876 |
</button>
|
| 877 |
+
|
| 878 |
+
{lastPrediction && (
|
| 879 |
+
<div className="mt-4">
|
| 880 |
+
<div className="text-[11px] text-green-400 mb-2">
|
| 881 |
+
Select the <span className="font-bold text-neon-green">correct digit</span> for online learning:
|
| 882 |
+
</div>
|
| 883 |
+
<div className="grid grid-cols-5 gap-2">
|
| 884 |
+
{Array.from({length:10}).map((_, d) => {
|
| 885 |
+
const isPred = lastPrediction.cls === d;
|
| 886 |
+
return (
|
| 887 |
+
<button
|
| 888 |
+
key={d}
|
| 889 |
+
onClick={() => sendFeedback(d)}
|
| 890 |
+
disabled={feedbackBusy || processing}
|
| 891 |
+
className={
|
| 892 |
+
"border rounded px-2 py-1 text-xs " +
|
| 893 |
+
(isPred
|
| 894 |
+
? "border-neon-green text-neon-green bg-black/40"
|
| 895 |
+
: "border-green-800 text-green-400 hover:border-neon-green hover:text-neon-green")
|
| 896 |
+
}
|
| 897 |
+
>
|
| 898 |
+
{d}
|
| 899 |
+
</button>
|
| 900 |
+
);
|
| 901 |
+
})}
|
| 902 |
+
</div>
|
| 903 |
+
</div>
|
| 904 |
+
)}
|
| 905 |
</div>
|
| 906 |
|
| 907 |
<div className="hud-panel p-5 hidden md:block rounded-t-xl min-w-[260px] border-b-0">
|