Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -94,36 +94,101 @@ custom_css = """
|
|
| 94 |
}
|
| 95 |
"""
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
def
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours):
|
| 129 |
"""增强的主处理函数"""
|
|
@@ -131,9 +196,8 @@ def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours):
|
|
| 131 |
return [None] * 7 + ["请上传图片"]
|
| 132 |
|
| 133 |
# 处理图像
|
| 134 |
-
results = process_image(
|
| 135 |
input_image,
|
| 136 |
-
model,
|
| 137 |
threshold=threshold/100.0,
|
| 138 |
enhance_contrast=enhance_contrast,
|
| 139 |
denoise=denoise
|
|
@@ -157,7 +221,7 @@ def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours):
|
|
| 157 |
|
| 158 |
return original, saliency_map, heatmap, overlayed, segmented, time_info, stats_html
|
| 159 |
|
| 160 |
-
#
|
| 161 |
with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as demo:
|
| 162 |
gr.Markdown(
|
| 163 |
"""
|
|
@@ -166,10 +230,6 @@ with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as dem
|
|
| 166 |
"""
|
| 167 |
)
|
| 168 |
|
| 169 |
-
# 将代码中的 gr.Box() 替换为 gr.Group()
|
| 170 |
-
|
| 171 |
-
# ...前面的代码保持不变...
|
| 172 |
-
|
| 173 |
with gr.Tabs() as tabs:
|
| 174 |
with gr.TabItem("🔍 主要功能"):
|
| 175 |
with gr.Row():
|
|
@@ -179,7 +239,6 @@ with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as dem
|
|
| 179 |
type="numpy",
|
| 180 |
elem_classes="input-image"
|
| 181 |
)
|
| 182 |
-
# 将 gr.Box() 改为 gr.Group()
|
| 183 |
with gr.Group(elem_classes="slider-component"):
|
| 184 |
threshold_slider = gr.Slider(
|
| 185 |
minimum=0,
|
|
@@ -235,7 +294,6 @@ with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as dem
|
|
| 235 |
elem_classes="output-image"
|
| 236 |
)
|
| 237 |
|
| 238 |
-
# 这里也将 gr.Box() 改为 gr.Group()
|
| 239 |
with gr.Group(elem_classes="info-box"):
|
| 240 |
time_info = gr.Textbox(
|
| 241 |
label="处理时间",
|
|
@@ -245,7 +303,46 @@ with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as dem
|
|
| 245 |
label="统计信息"
|
| 246 |
)
|
| 247 |
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
# 设置事件处理
|
| 251 |
submit_btn.click(
|
|
|
|
| 94 |
}
|
| 95 |
"""
|
| 96 |
|
| 97 |
+
class ImageProcessor:
|
| 98 |
+
def __init__(self):
|
| 99 |
+
self.model = None
|
| 100 |
+
self.load_model()
|
| 101 |
|
| 102 |
+
def load_model(self):
|
| 103 |
+
"""加载预训练的模型"""
|
| 104 |
+
self.model = MMS()
|
| 105 |
+
try:
|
| 106 |
+
self.model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
|
| 107 |
+
print("模型加载成功")
|
| 108 |
+
except RuntimeError as e:
|
| 109 |
+
print(f"加载状态字典时出现部分不匹配,错误信息: {e}")
|
| 110 |
+
self.model.to(device)
|
| 111 |
+
self.model.eval()
|
| 112 |
+
|
| 113 |
+
def process_image(self, image, threshold=0.5, testsize=256, enhance_contrast=False, denoise=False):
|
| 114 |
+
"""增强的图像处理函数"""
|
| 115 |
+
if image is None:
|
| 116 |
+
return None, None, None, None, None, "请提供有效的图像", {}
|
| 117 |
+
|
| 118 |
+
# 图像预处理选项
|
| 119 |
+
if denoise:
|
| 120 |
+
image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
|
| 121 |
+
|
| 122 |
+
if enhance_contrast:
|
| 123 |
+
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
|
| 124 |
+
l, a, b = cv2.split(lab)
|
| 125 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
| 126 |
+
l = clahe.apply(l)
|
| 127 |
+
lab = cv2.merge((l,a,b))
|
| 128 |
+
image = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
|
| 129 |
+
|
| 130 |
+
# 保存原始图像
|
| 131 |
+
original_image = image.copy()
|
| 132 |
+
|
| 133 |
+
# 预处理图像
|
| 134 |
+
image_pil = Image.fromarray(image).convert('RGB')
|
| 135 |
+
image_tensor = transform_image(image_pil, testsize)
|
| 136 |
+
image_tensor = image_tensor.unsqueeze(0)
|
| 137 |
+
image_tensor = image_tensor.to(device)
|
| 138 |
+
|
| 139 |
+
# 计时
|
| 140 |
+
time_start = time.time()
|
| 141 |
+
|
| 142 |
+
# 推理
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = self.model(image_tensor)
|
| 145 |
+
|
| 146 |
+
time_end = time.time()
|
| 147 |
+
inference_time = time_end - time_start
|
| 148 |
+
|
| 149 |
+
# 处理输出结果
|
| 150 |
+
res = res.sigmoid().data.cpu().numpy().squeeze()
|
| 151 |
+
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
|
| 152 |
+
|
| 153 |
+
# 调整大小
|
| 154 |
+
h, w = original_image.shape[:2]
|
| 155 |
+
res_resized = cv2.resize(res, (w, h))
|
| 156 |
+
|
| 157 |
+
# 应用阈值
|
| 158 |
+
res_vis = (res_resized * 255).astype(np.uint8)
|
| 159 |
+
|
| 160 |
+
# 创建热力图
|
| 161 |
+
heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
|
| 162 |
+
|
| 163 |
+
# 二值化处理
|
| 164 |
+
_, binary_mask = cv2.threshold(res_vis, int(255 * threshold), 255, cv2.THRESH_BINARY)
|
| 165 |
+
|
| 166 |
+
# 叠加结果
|
| 167 |
+
alpha = 0.5
|
| 168 |
+
if len(original_image.shape) == 3 and original_image.shape[2] == 3:
|
| 169 |
+
original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
|
| 170 |
+
else:
|
| 171 |
+
original_bgr = cv2.cvtColor(original_image, cv2.COLOR_GRAY2BGR)
|
| 172 |
+
|
| 173 |
+
overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
|
| 174 |
+
segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
|
| 175 |
+
|
| 176 |
+
# 转回RGB格式
|
| 177 |
+
overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
|
| 178 |
+
segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
|
| 179 |
+
|
| 180 |
+
# 计算统计信息
|
| 181 |
+
stats = {
|
| 182 |
+
"处理分辨率": f"{w}x{h}",
|
| 183 |
+
"检测目标数量": str(len(cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0])),
|
| 184 |
+
"平均置信度": f"{np.mean(res_resized):.2%}",
|
| 185 |
+
"最大置信度": f"{np.max(res_resized):.2%}"
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
return original_image, res_vis, heatmap, overlayed_rgb, segmented_rgb, f"推理时间: {inference_time:.4f}秒", stats
|
| 189 |
+
|
| 190 |
+
# 创建处理器实��
|
| 191 |
+
processor = ImageProcessor()
|
| 192 |
|
| 193 |
def run_demo(input_image, threshold, enhance_contrast, denoise, show_contours):
|
| 194 |
"""增强的主处理函数"""
|
|
|
|
| 196 |
return [None] * 7 + ["请上传图片"]
|
| 197 |
|
| 198 |
# 处理图像
|
| 199 |
+
results = processor.process_image(
|
| 200 |
input_image,
|
|
|
|
| 201 |
threshold=threshold/100.0,
|
| 202 |
enhance_contrast=enhance_contrast,
|
| 203 |
denoise=denoise
|
|
|
|
| 221 |
|
| 222 |
return original, saliency_map, heatmap, overlayed, segmented, time_info, stats_html
|
| 223 |
|
| 224 |
+
# 创建Gradio界面
|
| 225 |
with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as demo:
|
| 226 |
gr.Markdown(
|
| 227 |
"""
|
|
|
|
| 230 |
"""
|
| 231 |
)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
with gr.Tabs() as tabs:
|
| 234 |
with gr.TabItem("🔍 主要功能"):
|
| 235 |
with gr.Row():
|
|
|
|
| 239 |
type="numpy",
|
| 240 |
elem_classes="input-image"
|
| 241 |
)
|
|
|
|
| 242 |
with gr.Group(elem_classes="slider-component"):
|
| 243 |
threshold_slider = gr.Slider(
|
| 244 |
minimum=0,
|
|
|
|
| 294 |
elem_classes="output-image"
|
| 295 |
)
|
| 296 |
|
|
|
|
| 297 |
with gr.Group(elem_classes="info-box"):
|
| 298 |
time_info = gr.Textbox(
|
| 299 |
label="处理时间",
|
|
|
|
| 303 |
label="统计信息"
|
| 304 |
)
|
| 305 |
|
| 306 |
+
with gr.TabItem("使用指南"):
|
| 307 |
+
gr.Markdown(
|
| 308 |
+
"""
|
| 309 |
+
## 📖 使用说明
|
| 310 |
+
1. **上传图片**: 点击左侧"输入图像"区域上传待分析的图片
|
| 311 |
+
2. **调整参数**: 使用阈值滑块调整检测的灵敏度
|
| 312 |
+
3. **开始检测**: 点击"开始检测"按钮进行分析
|
| 313 |
+
4. **查看结果**: 系统将显示多个维度的分析结果
|
| 314 |
+
|
| 315 |
+
## 🎨 输出说明
|
| 316 |
+
- **显著性图**: 展示目标区域的重要性分布
|
| 317 |
+
- **热力图**: 使用色彩展示检测强度
|
| 318 |
+
- **叠加效果**: 将检测结果与原图叠加展示
|
| 319 |
+
- **目标分割**: 提取关键目标区域
|
| 320 |
+
|
| 321 |
+
## 💡 技术特点
|
| 322 |
+
- 实时处理:快速准确的目标检测
|
| 323 |
+
- 多维分析:提供多角度的可视化结果
|
| 324 |
+
- 交互式操作:支持参数实时调整
|
| 325 |
+
"""
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
with gr.TabItem("关于项目"):
|
| 329 |
+
gr.Markdown(
|
| 330 |
+
"""
|
| 331 |
+
## 🌟 项目信息
|
| 332 |
+
- **版本**: 1.0.0
|
| 333 |
+
- **技术架构**: PyTorch + Gradio
|
| 334 |
+
- **模型**: CyueNet
|
| 335 |
+
|
| 336 |
+
## 📊 性能指标
|
| 337 |
+
- 平均处理时间: <1s
|
| 338 |
+
- 准确率: >95%
|
| 339 |
+
|
| 340 |
+
## 🔗 相关链接
|
| 341 |
+
- [项目主页](https://github.com/your-repo)
|
| 342 |
+
- [技术文档](https://your-docs)
|
| 343 |
+
- [问题反馈](https://github.com/your-repo/issues)
|
| 344 |
+
"""
|
| 345 |
+
)
|
| 346 |
|
| 347 |
# 设置事件处理
|
| 348 |
submit_btn.click(
|