Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -448,9 +448,7 @@ class ImageProcessor:
|
|
| 448 |
|
| 449 |
time_end = time.time()
|
| 450 |
inference_time = time_end - time_start
|
| 451 |
-
|
| 452 |
-
# 确保转换为float32类型
|
| 453 |
-
# 确保转换为float32类型
|
| 454 |
# 确保转换为float32类型并保持原始显著性值
|
| 455 |
res = res.to(torch.float32).sigmoid().cpu().numpy().squeeze()
|
| 456 |
|
|
@@ -484,9 +482,6 @@ class ImageProcessor:
|
|
| 484 |
# 使用原始显著性值生成分析图表
|
| 485 |
analysis_plot = self.generate_analysis_plots(res_resized_original) # 使用未归一化的原始值
|
| 486 |
|
| 487 |
-
# 生成分析图表
|
| 488 |
-
analysis_plot = self.generate_analysis_plots(res_resized)
|
| 489 |
-
|
| 490 |
# 计算统计信息
|
| 491 |
contours = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
| 492 |
total_area = w * h
|
|
@@ -496,8 +491,8 @@ class ImageProcessor:
|
|
| 496 |
stats = {
|
| 497 |
"处理分辨率": f"{w}x{h}",
|
| 498 |
"检测到对象数": str(len(contours)),
|
| 499 |
-
"平均置信度": f"{np.mean(
|
| 500 |
-
"最大置信度": f"{np.max(
|
| 501 |
"覆盖率": f"{coverage_ratio:.2%}",
|
| 502 |
"处理时间": f"{inference_time:.3f}秒"
|
| 503 |
}
|
|
|
|
| 448 |
|
| 449 |
time_end = time.time()
|
| 450 |
inference_time = time_end - time_start
|
| 451 |
+
|
|
|
|
|
|
|
| 452 |
# 确保转换为float32类型并保持原始显著性值
|
| 453 |
res = res.to(torch.float32).sigmoid().cpu().numpy().squeeze()
|
| 454 |
|
|
|
|
| 482 |
# 使用原始显著性值生成分析图表
|
| 483 |
analysis_plot = self.generate_analysis_plots(res_resized_original) # 使用未归一化的原始值
|
| 484 |
|
|
|
|
|
|
|
|
|
|
| 485 |
# 计算统计信息
|
| 486 |
contours = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
| 487 |
total_area = w * h
|
|
|
|
| 491 |
stats = {
|
| 492 |
"处理分辨率": f"{w}x{h}",
|
| 493 |
"检测到对象数": str(len(contours)),
|
| 494 |
+
"平均置信度": f"{np.mean(res_resized_original):.2%}", # 使用原始值
|
| 495 |
+
"最大置信度": f"{np.max(res_resized_original):.2%}", # 使用原始值
|
| 496 |
"覆盖率": f"{coverage_ratio:.2%}",
|
| 497 |
"处理时间": f"{inference_time:.3f}秒"
|
| 498 |
}
|