kunkk commited on
Commit
c1ca72e
·
verified ·
1 Parent(s): 0eb142b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -7
app.py CHANGED
@@ -1,15 +1,18 @@
1
- import gradio as gr
2
  import torch
3
  import torch.nn.functional as F
4
  import numpy as np
5
  import os
6
  import time
 
7
  import cv2
8
  from PIL import Image
9
  from model.CyueNet_models import MMS
10
  from utils1.data import transform_image
11
 
12
- # 设置主题颜色和样式
 
 
 
13
  custom_css = """
14
  .gradio-container {
15
  background: linear-gradient(to right, #f6f8fa, #ffffff);
@@ -33,10 +36,77 @@ custom_css = """
33
  }
34
  """
35
 
36
- # [previous model loading and processing functions remain the same]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  def run_demo(input_image, threshold):
39
- """增强的Gradio界面主函数"""
40
  if input_image is None:
41
  return [None] * 6 + ["请上传图片"]
42
 
@@ -46,12 +116,19 @@ def run_demo(input_image, threshold):
46
  )
47
 
48
  # 计算检测区域占比
49
- mask_area = np.sum(saliency_map > 127) / (saliency_map.shape[0] * saliency_map.shape[1])
50
- area_info = f"检测区域占比: {mask_area:.2%}"
 
 
 
51
 
52
  return original, saliency_map, heatmap, overlayed, segmented, time_info, area_info
53
 
54
- # 创建增强的Gradio界面
 
 
 
 
55
  with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as demo:
56
  gr.Markdown(
57
  """
 
 
1
  import torch
2
  import torch.nn.functional as F
3
  import numpy as np
4
  import os
5
  import time
6
+ import gradio as gr
7
  import cv2
8
  from PIL import Image
9
  from model.CyueNet_models import MMS
10
  from utils1.data import transform_image
11
 
12
+ # 设置GPU/CPU
13
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
14
+
15
+ # 自定义CSS
16
  custom_css = """
17
  .gradio-container {
18
  background: linear-gradient(to right, #f6f8fa, #ffffff);
 
36
  }
37
  """
38
 
39
+ def load_model():
40
+ """加载预训练的模型"""
41
+ model = MMS()
42
+ try:
43
+ model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
44
+ print("模型加载成功")
45
+ except RuntimeError as e:
46
+ print(f"加载状态字典时出现部分不匹配,错误信息: {e}")
47
+ model.to(device)
48
+ model.eval()
49
+ return model
50
+
51
+ def process_image(image, model, threshold=0.5, testsize=256):
52
+ """处理图像并返回显著性检测结果"""
53
+ if image is None:
54
+ return None, None, None, None, None, "请提供有效的图像"
55
+
56
+ # 保存原始图像
57
+ original_image = image.copy()
58
+
59
+ # 预处理图像
60
+ image_pil = Image.fromarray(image).convert('RGB')
61
+ image_tensor = transform_image(image_pil, testsize)
62
+ image_tensor = image_tensor.unsqueeze(0)
63
+ image_tensor = image_tensor.to(device)
64
+
65
+ # 计时
66
+ time_start = time.time()
67
+
68
+ # 推理
69
+ with torch.no_grad():
70
+ x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = model(image_tensor)
71
+
72
+ time_end = time.time()
73
+ inference_time = time_end - time_start
74
+
75
+ # 处理输出结果
76
+ res = res.sigmoid().data.cpu().numpy().squeeze()
77
+ res = (res - res.min()) / (res.max() - res.min() + 1e-8)
78
+
79
+ # 调整大小
80
+ h, w = original_image.shape[:2]
81
+ res_resized = cv2.resize(res, (w, h))
82
+
83
+ # 应用阈值
84
+ res_vis = (res_resized * 255).astype(np.uint8)
85
+
86
+ # 创建热力图
87
+ heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
88
+
89
+ # 叠加结果
90
+ alpha = 0.5
91
+ if len(original_image.shape) == 3 and original_image.shape[2] == 3:
92
+ original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
93
+ else:
94
+ original_bgr = cv2.cvtColor(original_image, cv2.COLOR_GRAY2BGR)
95
+
96
+ overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
97
+
98
+ # 使用阈值进行二值化
99
+ _, binary_mask = cv2.threshold(res_vis, int(255 * threshold), 255, cv2.THRESH_BINARY)
100
+ segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
101
+
102
+ # 转回RGB格式
103
+ overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
104
+ segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
105
+
106
+ return original_image, res_vis, heatmap, overlayed_rgb, segmented_rgb, f"推理时间: {inference_time:.4f}秒"
107
 
108
  def run_demo(input_image, threshold):
109
+ """Gradio界面的主函数"""
110
  if input_image is None:
111
  return [None] * 6 + ["请上传图片"]
112
 
 
116
  )
117
 
118
  # 计算检测区域占比
119
+ if saliency_map is not None:
120
+ mask_area = np.sum(saliency_map > 127) / (saliency_map.shape[0] * saliency_map.shape[1])
121
+ area_info = f"检测区域占比: {mask_area:.2%}"
122
+ else:
123
+ area_info = "无法计算区域占比"
124
 
125
  return original, saliency_map, heatmap, overlayed, segmented, time_info, area_info
126
 
127
+ # 加载模型
128
+ print("正在加载模型...")
129
+ model = load_model()
130
+
131
+ # 创建Gradio界面
132
  with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as demo:
133
  gr.Markdown(
134
  """