Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,12 +9,10 @@ from PIL import Image
|
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
from model.CyueNet_models import MMS
|
| 11 |
from utils1.data import transform_image
|
| 12 |
-
import plotly.graph_objects as go
|
| 13 |
-
import plotly.express as px
|
| 14 |
-
import pandas as pd
|
| 15 |
|
| 16 |
-
# 设置GPU/CPU
|
| 17 |
-
device = torch.device('cuda:0' if torch.cuda.
|
|
|
|
| 18 |
custom_css = """
|
| 19 |
:root {
|
| 20 |
--primary-color: #2196F3;
|
|
@@ -140,6 +138,7 @@ custom_css = """
|
|
| 140 |
margin: 15px 0;
|
| 141 |
}
|
| 142 |
"""
|
|
|
|
| 143 |
class ImageProcessor:
|
| 144 |
def __init__(self):
|
| 145 |
self.model = None
|
|
@@ -186,25 +185,31 @@ class ImageProcessor:
|
|
| 186 |
return image
|
| 187 |
|
| 188 |
def generate_analysis_plots(self, saliency_map):
|
| 189 |
-
"""生成分析图表"""
|
| 190 |
-
#
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
#
|
| 197 |
-
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
def process_image(self, image, threshold=0.5, testsize=256,
|
| 203 |
enhance_contrast=False, denoise=False,
|
| 204 |
brightness=0, contrast=0, filter_type="无"):
|
| 205 |
"""增强的图像处理函数"""
|
| 206 |
if image is None:
|
| 207 |
-
return [None] *
|
| 208 |
|
| 209 |
# 图像预处理
|
| 210 |
if denoise:
|
|
@@ -270,9 +275,10 @@ class ImageProcessor:
|
|
| 270 |
analysis_plot = self.generate_analysis_plots(res_resized)
|
| 271 |
|
| 272 |
# 计算统计信息
|
|
|
|
| 273 |
stats = {
|
| 274 |
"处理分辨率": f"{w}x{h}",
|
| 275 |
-
"检测目标数量": str(len(
|
| 276 |
"平均置信度": f"{np.mean(res_resized):.2%}",
|
| 277 |
"最大置信度": f"{np.max(res_resized):.2%}",
|
| 278 |
"处理时间": f"{inference_time:.3f}秒"
|
|
@@ -440,8 +446,9 @@ with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as dem
|
|
| 440 |
stats_output = gr.HTML(
|
| 441 |
label="统计信息"
|
| 442 |
)
|
| 443 |
-
analysis_plot = gr.
|
| 444 |
-
label="显著性分布分析"
|
|
|
|
| 445 |
)
|
| 446 |
|
| 447 |
with gr.TabItem("📖 使用指南"):
|
|
@@ -540,4 +547,4 @@ with gr.Blocks(title="高级显著性目标检测系统", css=custom_css) as dem
|
|
| 540 |
|
| 541 |
# 启动应用
|
| 542 |
if __name__ == "__main__":
|
| 543 |
-
demo.launch(share=True)
|
|
|
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
from model.CyueNet_models import MMS
|
| 11 |
from utils1.data import transform_image
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# 设置GPU/CPU - 修复了torch.cuda.is_available()的调用
|
| 14 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
|
| 16 |
custom_css = """
|
| 17 |
:root {
|
| 18 |
--primary-color: #2196F3;
|
|
|
|
| 138 |
margin: 15px 0;
|
| 139 |
}
|
| 140 |
"""
|
| 141 |
+
|
| 142 |
class ImageProcessor:
|
| 143 |
def __init__(self):
|
| 144 |
self.model = None
|
|
|
|
| 185 |
return image
|
| 186 |
|
| 187 |
def generate_analysis_plots(self, saliency_map):
|
| 188 |
+
"""生成分析图表 - 使用matplotlib替代plotly"""
|
| 189 |
+
# 创建直方图
|
| 190 |
+
plt.figure(figsize=(8, 4))
|
| 191 |
+
plt.hist(saliency_map.flatten(), bins=50, color='skyblue', edgecolor='black')
|
| 192 |
+
plt.title('显著性分布直方图')
|
| 193 |
+
plt.xlabel('显著性值')
|
| 194 |
+
plt.ylabel('频率')
|
| 195 |
+
plt.grid(axis='y', alpha=0.75)
|
| 196 |
|
| 197 |
+
# 保存到缓冲区
|
| 198 |
+
plt.tight_layout()
|
| 199 |
+
plt.savefig('temp_hist.png')
|
| 200 |
+
plt.close()
|
| 201 |
|
| 202 |
+
# 读取并返回图像
|
| 203 |
+
hist_img = cv2.imread('temp_hist.png')
|
| 204 |
+
hist_img = cv2.cvtColor(hist_img, cv2.COLOR_BGR2RGB)
|
| 205 |
+
return hist_img
|
| 206 |
|
| 207 |
def process_image(self, image, threshold=0.5, testsize=256,
|
| 208 |
enhance_contrast=False, denoise=False,
|
| 209 |
brightness=0, contrast=0, filter_type="无"):
|
| 210 |
"""增强的图像处理函数"""
|
| 211 |
if image is None:
|
| 212 |
+
return [None] * 8 + ["请提供有效的图像"]
|
| 213 |
|
| 214 |
# 图像预处理
|
| 215 |
if denoise:
|
|
|
|
| 275 |
analysis_plot = self.generate_analysis_plots(res_resized)
|
| 276 |
|
| 277 |
# 计算统计信息
|
| 278 |
+
contours = cv2.findContours(binary_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
| 279 |
stats = {
|
| 280 |
"处理分辨率": f"{w}x{h}",
|
| 281 |
+
"检测目标数量": str(len(contours)),
|
| 282 |
"平均置信度": f"{np.mean(res_resized):.2%}",
|
| 283 |
"最大置信度": f"{np.max(res_resized):.2%}",
|
| 284 |
"处理时间": f"{inference_time:.3f}秒"
|
|
|
|
| 446 |
stats_output = gr.HTML(
|
| 447 |
label="统计信息"
|
| 448 |
)
|
| 449 |
+
analysis_plot = gr.Image(
|
| 450 |
+
label="显著性分布分析",
|
| 451 |
+
elem_classes="output-image"
|
| 452 |
)
|
| 453 |
|
| 454 |
with gr.TabItem("📖 使用指南"):
|
|
|
|
| 547 |
|
| 548 |
# 启动应用
|
| 549 |
if __name__ == "__main__":
|
| 550 |
+
demo.launch(share=True)
|