likhonsheikhdev's picture
Upload folder using huggingface_hub
7270816 verified
raw
history blame
22.1 kB
"""
Docker Model Runner - Anthropic API Compatible
Full compatibility with Anthropic Messages API + Interleaved Thinking
Optimized for: 2 vCPU, 16GB RAM
"""
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Optional, List, Union, Literal, Any, Dict
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from datetime import datetime
from contextlib import asynccontextmanager
import uuid
import time
import json
import asyncio
import re
# CPU-optimized lightweight models
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2")
MODEL_DISPLAY_NAME = os.getenv("MODEL_NAME", "MiniMax-M2")
# Set CPU threading
torch.set_num_threads(2)
# Global model cache
models = {}
def load_models():
"""Pre-load models for faster inference"""
global models
print("Loading models for CPU inference...")
models["tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL)
models["model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL)
models["model"].eval()
if models["tokenizer"].pad_token is None:
models["tokenizer"].pad_token = models["tokenizer"].eos_token
print("✅ All models loaded successfully!")
@asynccontextmanager
async def lifespan(app: FastAPI):
load_models()
yield
models.clear()
app = FastAPI(
title="Docker Model Runner",
description="Anthropic API Compatible with Interleaved Thinking",
version="1.0.0",
lifespan=lifespan
)
# ============== Anthropic API Models ==============
class TextBlock(BaseModel):
type: Literal["text"] = "text"
text: str
class ThinkingBlock(BaseModel):
type: Literal["thinking"] = "thinking"
thinking: str
class SignatureBlock(BaseModel):
type: Literal["signature"] = "signature"
signature: str
class ToolUseBlock(BaseModel):
type: Literal["tool_use"] = "tool_use"
id: str
name: str
input: Dict[str, Any]
class ToolResultContent(BaseModel):
type: Literal["tool_result"] = "tool_result"
tool_use_id: str
content: Union[str, List[TextBlock]]
is_error: Optional[bool] = False
class ImageSource(BaseModel):
type: Literal["base64", "url"]
media_type: Optional[str] = None
data: Optional[str] = None
url: Optional[str] = None
class ImageBlock(BaseModel):
type: Literal["image"] = "image"
source: ImageSource
ContentBlock = Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock, ToolResultContent, ImageBlock, str]
class MessageParam(BaseModel):
role: Literal["user", "assistant"]
content: Union[str, List[ContentBlock]]
class ToolInputSchema(BaseModel):
type: str = "object"
properties: Optional[Dict[str, Any]] = None
required: Optional[List[str]] = None
class Tool(BaseModel):
name: str
description: str
input_schema: ToolInputSchema
class ToolChoice(BaseModel):
type: Literal["auto", "any", "tool"] = "auto"
name: Optional[str] = None
disable_parallel_tool_use: Optional[bool] = False
class ThinkingConfig(BaseModel):
type: Literal["enabled", "disabled"] = "disabled"
budget_tokens: Optional[int] = None
class Metadata(BaseModel):
user_id: Optional[str] = None
class AnthropicRequest(BaseModel):
model: str = "MiniMax-M2"
messages: List[MessageParam]
max_tokens: int = 1024
temperature: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
top_p: Optional[float] = Field(default=1.0, gt=0.0, le=1.0)
top_k: Optional[int] = None # Ignored
stop_sequences: Optional[List[str]] = None # Ignored
stream: Optional[bool] = False
system: Optional[Union[str, List[TextBlock]]] = None
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None
metadata: Optional[Metadata] = None
thinking: Optional[ThinkingConfig] = None
service_tier: Optional[str] = None # Ignored
class Usage(BaseModel):
input_tokens: int
output_tokens: int
cache_creation_input_tokens: Optional[int] = 0
cache_read_input_tokens: Optional[int] = 0
class AnthropicResponse(BaseModel):
id: str
type: Literal["message"] = "message"
role: Literal["assistant"] = "assistant"
content: List[Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock]]
model: str
stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = "end_turn"
stop_sequence: Optional[str] = None
usage: Usage
# ============== Helper Functions ==============
def extract_text_from_content(content: Union[str, List[ContentBlock]]) -> str:
"""Extract text from content which may be string or list of blocks"""
if isinstance(content, str):
return content
texts = []
for block in content:
if isinstance(block, str):
texts.append(block)
elif hasattr(block, 'text'):
texts.append(block.text)
elif hasattr(block, 'thinking'):
texts.append(block.thinking)
elif isinstance(block, dict):
if block.get('type') == 'text':
texts.append(block.get('text', ''))
elif block.get('type') == 'thinking':
texts.append(block.get('thinking', ''))
return " ".join(texts)
def format_system_prompt(system: Optional[Union[str, List[TextBlock]]]) -> str:
"""Format system prompt from string or list of blocks"""
if system is None:
return ""
if isinstance(system, str):
return system
return " ".join([block.text for block in system if hasattr(block, 'text')])
def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Union[str, List[TextBlock]]] = None, include_thinking: bool = False) -> str:
"""Convert chat messages to a single prompt string"""
prompt_parts = []
system_text = format_system_prompt(system)
if system_text:
prompt_parts.append(f"System: {system_text}\n\n")
for msg in messages:
role = msg.role
content = msg.content
# Handle interleaved thinking in message history
if isinstance(content, list):
for block in content:
if isinstance(block, dict):
block_type = block.get('type', 'text')
if block_type == 'thinking' and include_thinking:
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n")
elif block_type == 'text':
if role == "user":
prompt_parts.append(f"Human: {block.get('text', '')}\n\n")
else:
prompt_parts.append(f"Assistant: {block.get('text', '')}\n\n")
elif hasattr(block, 'type'):
if block.type == 'thinking' and include_thinking:
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n")
elif block.type == 'text':
if role == "user":
prompt_parts.append(f"Human: {block.text}\n\n")
else:
prompt_parts.append(f"Assistant: {block.text}\n\n")
else:
content_text = content if isinstance(content, str) else extract_text_from_content(content)
if role == "user":
prompt_parts.append(f"Human: {content_text}\n\n")
elif role == "assistant":
prompt_parts.append(f"Assistant: {content_text}\n\n")
prompt_parts.append("Assistant:")
return "".join(prompt_parts)
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple:
"""Generate text and return (text, input_tokens, output_tokens)"""
tokenizer = models["tokenizer"]
model = models["model"]
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(max_tokens, 256),
temperature=temperature if temperature > 0 else 1.0,
top_p=top_p,
do_sample=temperature > 0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
output_tokens = len(generated_tokens)
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text.strip(), input_tokens, output_tokens
def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple:
"""Generate thinking/reasoning content"""
tokenizer = models["tokenizer"]
model = models["model"]
thinking_prompt = f"{prompt}\n\nLet me think through this step by step:\n"
inputs = tokenizer(thinking_prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(budget_tokens, 128),
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
thinking_tokens = len(generated_tokens)
thinking_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return thinking_text.strip(), thinking_tokens
async def generate_stream_with_thinking(
prompt: str,
max_tokens: int,
temperature: float,
top_p: float,
message_id: str,
model_name: str,
thinking_enabled: bool = False,
thinking_budget: int = 100
):
"""Generate streaming response with interleaved thinking in Anthropic SSE format"""
tokenizer = models["tokenizer"]
model = models["model"]
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
input_tokens = inputs["input_ids"].shape[1]
total_output_tokens = 0
# Send message_start event
message_start = {
"type": "message_start",
"message": {
"id": message_id,
"type": "message",
"role": "assistant",
"content": [],
"model": model_name,
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": input_tokens, "output_tokens": 0}
}
}
yield f"event: message_start\ndata: {json.dumps(message_start)}\n\n"
content_index = 0
# Generate thinking block if enabled
if thinking_enabled:
# Send thinking content_block_start
thinking_block_start = {
"type": "content_block_start",
"index": content_index,
"content_block": {"type": "thinking", "thinking": ""}
}
yield f"event: content_block_start\ndata: {json.dumps(thinking_block_start)}\n\n"
# Generate thinking content
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
total_output_tokens += thinking_tokens
# Stream thinking in chunks
chunk_size = 10
for i in range(0, len(thinking_text), chunk_size):
chunk = thinking_text[i:i+chunk_size]
thinking_delta = {
"type": "content_block_delta",
"index": content_index,
"delta": {"type": "thinking_delta", "thinking": chunk}
}
yield f"event: content_block_delta\ndata: {json.dumps(thinking_delta)}\n\n"
await asyncio.sleep(0.01)
# Send thinking content_block_stop
thinking_block_stop = {"type": "content_block_stop", "index": content_index}
yield f"event: content_block_stop\ndata: {json.dumps(thinking_block_stop)}\n\n"
content_index += 1
# Send text content_block_start
text_block_start = {
"type": "content_block_start",
"index": content_index,
"content_block": {"type": "text", "text": ""}
}
yield f"event: content_block_start\ndata: {json.dumps(text_block_start)}\n\n"
# Generate main response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=min(max_tokens, 256),
temperature=temperature if temperature > 0 else 1.0,
top_p=top_p,
do_sample=temperature > 0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][input_tokens:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
total_output_tokens += len(generated_tokens)
# Stream text in chunks
chunk_size = 5
for i in range(0, len(generated_text), chunk_size):
chunk = generated_text[i:i+chunk_size]
text_delta = {
"type": "content_block_delta",
"index": content_index,
"delta": {"type": "text_delta", "text": chunk}
}
yield f"event: content_block_delta\ndata: {json.dumps(text_delta)}\n\n"
await asyncio.sleep(0.01)
# Send text content_block_stop
text_block_stop = {"type": "content_block_stop", "index": content_index}
yield f"event: content_block_stop\ndata: {json.dumps(text_block_stop)}\n\n"
# Send message_delta event
message_delta = {
"type": "message_delta",
"delta": {"stop_reason": "end_turn", "stop_sequence": None},
"usage": {"output_tokens": total_output_tokens}
}
yield f"event: message_delta\ndata: {json.dumps(message_delta)}\n\n"
# Send message_stop event
message_stop = {"type": "message_stop"}
yield f"event: message_stop\ndata: {json.dumps(message_stop)}\n\n"
def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_text: str) -> Optional[ToolUseBlock]:
"""Check if the response should trigger a tool call"""
if not tools:
return None
for tool in tools:
if tool.name.lower() in generated_text.lower():
return ToolUseBlock(
type="tool_use",
id=f"toolu_{uuid.uuid4().hex[:24]}",
name=tool.name,
input={}
)
return None
# ============== Anthropic API Endpoints ==============
@app.post("/v1/messages")
async def create_message(request: AnthropicRequest):
"""
Anthropic Messages API compatible endpoint with Interleaved Thinking
POST /v1/messages
Supports:
- Text messages
- System prompts
- Streaming responses
- Tool/function calling
- Interleaved thinking blocks
- Thinking budget tokens
- Metadata
"""
try:
message_id = f"msg_{uuid.uuid4().hex[:24]}"
# Check if thinking is enabled
thinking_enabled = False
thinking_budget = 100
if request.thinking:
if isinstance(request.thinking, dict):
thinking_enabled = request.thinking.get('type') == 'enabled'
thinking_budget = request.thinking.get('budget_tokens', 100)
else:
thinking_enabled = request.thinking.type == 'enabled'
thinking_budget = request.thinking.budget_tokens or 100
# Format messages to prompt (include thinking from history if enabled)
prompt = format_messages_to_prompt(request.messages, request.system, include_thinking=thinking_enabled)
# Handle streaming
if request.stream:
return StreamingResponse(
generate_stream_with_thinking(
prompt=prompt,
max_tokens=request.max_tokens,
temperature=request.temperature or 1.0,
top_p=request.top_p or 1.0,
message_id=message_id,
model_name=request.model,
thinking_enabled=thinking_enabled,
thinking_budget=thinking_budget
),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no"
}
)
# Non-streaming response
content_blocks = []
total_output_tokens = 0
# Generate thinking block if enabled
if thinking_enabled:
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget)
total_output_tokens += thinking_tokens
content_blocks.append(ThinkingBlock(type="thinking", thinking=thinking_text))
# Generate main response
generated_text, input_tokens, output_tokens = generate_text(
prompt=prompt,
max_tokens=request.max_tokens,
temperature=request.temperature or 1.0,
top_p=request.top_p or 1.0
)
total_output_tokens += output_tokens
# Check for tool calls
tool_use = handle_tool_call(request.tools, request.messages, generated_text) if request.tools else None
if tool_use:
content_blocks.append(TextBlock(type="text", text=generated_text))
content_blocks.append(tool_use)
stop_reason = "tool_use"
else:
content_blocks.append(TextBlock(type="text", text=generated_text))
stop_reason = "end_turn"
return AnthropicResponse(
id=message_id,
content=content_blocks,
model=request.model,
stop_reason=stop_reason,
usage=Usage(input_tokens=input_tokens, output_tokens=total_output_tokens)
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============== OpenAI Compatible Endpoints ==============
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str = "distilgpt2"
messages: List[ChatMessage]
max_tokens: Optional[int] = 1024
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
stream: Optional[bool] = False
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
"""OpenAI Chat Completions API compatible endpoint"""
try:
anthropic_messages = [
MessageParam(role=msg.role if msg.role in ["user", "assistant"] else "user",
content=msg.content)
for msg in request.messages
if msg.role in ["user", "assistant"]
]
prompt = format_messages_to_prompt(anthropic_messages)
generated_text, input_tokens, output_tokens = generate_text(
prompt=prompt,
max_tokens=request.max_tokens or 1024,
temperature=request.temperature or 0.7,
top_p=request.top_p or 1.0
)
return {
"id": f"chatcmpl-{uuid.uuid4().hex[:24]}",
"object": "chat.completion",
"created": int(time.time()),
"model": request.model,
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": generated_text},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": input_tokens,
"completion_tokens": output_tokens,
"total_tokens": input_tokens + output_tokens
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/v1/models")
async def list_models():
"""List available models"""
return {
"object": "list",
"data": [
{"id": "MiniMax-M2", "object": "model", "created": int(time.time()), "owned_by": "local"},
{"id": "MiniMax-M2-Stable", "object": "model", "created": int(time.time()), "owned_by": "local"},
{"id": GENERATOR_MODEL, "object": "model", "created": int(time.time()), "owned_by": "local"}
]
}
# ============== Utility Endpoints ==============
@app.get("/")
async def root():
"""Welcome endpoint"""
return {
"message": "Docker Model Runner API (Anthropic Compatible + Interleaved Thinking)",
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
"docs": "/docs",
"api_endpoints": {
"anthropic_messages": "POST /v1/messages",
"openai_chat": "POST /v1/chat/completions",
"models": "GET /v1/models"
},
"supported_features": [
"text messages",
"system prompts",
"streaming responses",
"tool/function calling",
"interleaved thinking blocks",
"thinking budget tokens",
"metadata"
]
}
@app.get("/health")
async def health():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": datetime.utcnow().isoformat(),
"hardware": "CPU Basic: 2 vCPU · 16 GB RAM",
"models_loaded": len(models) > 0
}
@app.get("/info")
async def info():
"""API information"""
return {
"name": "Docker Model Runner",
"version": "1.1.0",
"api_compatibility": ["anthropic", "openai"],
"supported_models": ["MiniMax-M2", "MiniMax-M2-Stable"],
"interleaved_thinking": {
"supported": True,
"streaming": True,
"budget_tokens": True
},
"supported_parameters": {
"fully_supported": ["model", "messages", "max_tokens", "stream", "system", "temperature", "top_p", "tools", "tool_choice", "metadata", "thinking"],
"ignored": ["top_k", "stop_sequences", "service_tier"]
},
"message_types": {
"supported": ["text", "tool_use", "tool_result", "thinking"],
"not_supported": ["image", "document"]
}
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)