Spaces:
Runtime error
Runtime error
File size: 5,883 Bytes
5eb40a3 4f97961 b9acf2f f8c7edf 5eb40a3 1303c4e 98cad23 a9c00ee 1303c4e 5eb40a3 1303c4e 98cad23 64d30b7 98cad23 5eb40a3 93fa881 1303c4e 5eb40a3 f8c7edf b9acf2f f8c7edf 5eb40a3 93fa881 5eb40a3 64d30b7 5eb40a3 a9c00ee 5eb40a3 93fa881 5eb40a3 4f97961 b9acf2f f8c7edf b9acf2f f8c7edf b9acf2f 5eb40a3 41dfffc 5eb40a3 f8c7edf 5eb40a3 47ab1d0 5eb40a3 47ab1d0 5eb40a3 1303c4e 93fa881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ValidationError
from typing import List, Optional
from torch import cuda
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv
import os
import uvicorn
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Required for access to a gated model
load_dotenv()
hf_token = os.getenv("HF_TOKEN", None)
if hf_token is not None:
login(token=hf_token)
# Configurable model identifier
model_name = os.getenv("HF_MODEL", "swiss-ai/Apertus-8B-Instruct-2509")
# Keep data in session
model = None
tokenizer = None
class TextInput(BaseModel):
text: str
min_length: int = 3
# Apertus by default supports a context length up to 65,536 tokens.
max_length: int = 65536
class ModelResponse(BaseModel):
text: str
confidence: float
processing_time: float
class ChatMessage(BaseModel):
role: str
content: str
class Completion(BaseModel):
model: str = "apertus"
messages: List[ChatMessage]
max_tokens: Optional[int] = 512
temperature: Optional[float] = 0.1
top_p: Optional[float] = 0.9
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load the transformer model on startup"""
global model, tokenizer
try:
logger.info(f"Loading model: {model_name}")
# Automatically select device based on availability
device = "cuda" if cuda.is_available() else "cpu"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # Automatically splits model across CPU/GPU
low_cpu_mem_usage=True, # Avoids unnecessary CPU memory duplication
offload_folder="offload", # Temporary offload to disk
)
#.to(device)
logger.info(f"Model loaded successfully! ({device})")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise e
# Release resources when the app is stopped
yield
del model
del tokenizer
cuda.empty_cache()
# Setup our app
app = FastAPI(
title="Apertus API",
description="REST API for serving Apertus models via Hugging Face transformers",
version="0.1.0",
docs_url="/",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def fit_to_length(text, min_length=3, max_length=100):
"""Truncate text if too long."""
text = text[:max_length]
if len(text) == max_length:
logger.warning("Warning: text truncated")
if len(text) < min_length:
logger.warning("Warning: empty text, aborting")
return None
return text
def get_model_reponse(messages_think):
"""Process the text content."""
# Prepare the model input
text = tokenizer.apply_chat_template(
messages_think,
tokenize=False,
add_generation_prompt=True,
top_p=0.9,
temperature=0.8,
)
model_inputs = tokenizer(
[text],
return_tensors="pt",
add_special_tokens=False
).to(model.device)
# Generate the output
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
# Return just the text
return tokenizer.decode(output_ids, skip_special_tokens=True)
@app.post("/v1/models/apertus")
async def completion(data: Completion):
"""Generate an OpenAPI-style completion"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
result = get_model_reponse(data)
return {
"choices": [
{
"text": result,
"_index": 0,
"logprobs": None,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": len(text),
"completion_tokens": len(result),
"total_tokens": len(text) + len(result)
}
}
except ValidationError as e:
raise HTTPException(status_code=400, detail="Invalid input data") from e
@app.get("/predict", response_model=ModelResponse)
async def predict(q: str):
"""Generate a model response for input text"""
if model is None or tokenizer is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
import time
start_time = time.time()
input_data = TextInput(text=q)
text = fit_to_length(input_data.text, input_data.min_length, input_data.max_length)
messages_think = [
{"role": "user", "content": text}
]
result = get_model_reponse(messages_think)
# Checkpoint
processing_time = time.time() - start_time
return ModelResponse(
text=result, #['label'],
confidence=0, #result['score'],
processing_time=processing_time
)
except HTTPException as e:
logger.error(f"Evaluation error: {e}")
raise HTTPException(status_code=500, detail="Evaluation failed")
@app.get("/health")
async def health_check():
"""Health check and basic configuration"""
return {
"status": "healthy",
"model_loaded": model is not None,
"gpu_available": cuda.is_available()
}
if __name__=='__main__':
uvicorn.run('app:app', reload=True)
|