File size: 5,883 Bytes
5eb40a3
 
4f97961
b9acf2f
f8c7edf
5eb40a3
 
 
 
1303c4e
98cad23
 
a9c00ee
1303c4e
5eb40a3
 
 
 
 
1303c4e
98cad23
64d30b7
98cad23
 
5eb40a3
93fa881
 
 
1303c4e
5eb40a3
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c7edf
 
 
 
b9acf2f
f8c7edf
 
 
 
 
5eb40a3
 
 
 
 
 
93fa881
5eb40a3
 
 
 
 
 
 
 
64d30b7
 
 
 
 
 
5eb40a3
 
 
 
 
a9c00ee
 
 
5eb40a3
 
 
 
 
 
 
93fa881
5eb40a3
 
 
4f97961
 
 
 
 
 
 
 
b9acf2f
 
 
 
 
 
 
 
 
 
 
 
f8c7edf
b9acf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c7edf
b9acf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb40a3
 
 
 
 
 
 
 
 
 
 
 
41dfffc
5eb40a3
f8c7edf
 
 
 
5eb40a3
 
 
 
 
47ab1d0
 
5eb40a3
 
 
47ab1d0
5eb40a3
 
 
 
 
 
 
 
 
 
 
1303c4e
93fa881
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ValidationError
from typing import List, Optional

from torch import cuda
from transformers import AutoModelForCausalLM, AutoTokenizer

from huggingface_hub import login
from dotenv import load_dotenv
import os
import uvicorn

import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Required for access to a gated model
load_dotenv()
hf_token = os.getenv("HF_TOKEN", None)
if hf_token is not None:
    login(token=hf_token)

# Configurable model identifier
model_name = os.getenv("HF_MODEL", "swiss-ai/Apertus-8B-Instruct-2509")

# Keep data in session
model = None
tokenizer = None

class TextInput(BaseModel):
    text: str
    min_length: int = 3
    # Apertus by default supports a context length up to 65,536 tokens.
    max_length: int = 65536

class ModelResponse(BaseModel):
    text: str
    confidence: float
    processing_time: float

class ChatMessage(BaseModel):
    role: str
    content: str

class Completion(BaseModel):
    model: str = "apertus"
    messages: List[ChatMessage]
    max_tokens: Optional[int] = 512
    temperature: Optional[float] = 0.1
    top_p: Optional[float] = 0.9

@asynccontextmanager
async def lifespan(app: FastAPI):
    """Load the transformer model on startup"""
    global model, tokenizer
    try:
        logger.info(f"Loading model: {model_name}")

        # Automatically select device based on availability
        device = "cuda" if cuda.is_available() else "cpu"

        # load the tokenizer and the model
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",        # Automatically splits model across CPU/GPU
            low_cpu_mem_usage=True,   # Avoids unnecessary CPU memory duplication
            offload_folder="offload", # Temporary offload to disk
        )
        #.to(device)
        logger.info(f"Model loaded successfully! ({device})")
    except Exception as e:
        logger.error(f"Failed to load model: {e}")
        raise e
    # Release resources when the app is stopped
    yield
    del model
    del tokenizer
    cuda.empty_cache()


# Setup our app
app = FastAPI(
    title="Apertus API",
    description="REST API for serving Apertus models via Hugging Face transformers",
    version="0.1.0",
    docs_url="/",
    lifespan=lifespan
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


def fit_to_length(text, min_length=3, max_length=100):
    """Truncate text if too long."""
    text = text[:max_length]
    if len(text) == max_length:
        logger.warning("Warning: text truncated")
    if len(text) < min_length:
        logger.warning("Warning: empty text, aborting")
        return None
    return text


def get_model_reponse(messages_think):
    """Process the text content."""

    # Prepare the model input
    text = tokenizer.apply_chat_template(
        messages_think,
        tokenize=False,
        add_generation_prompt=True,
        top_p=0.9,
        temperature=0.8,
    )
    model_inputs = tokenizer(
        [text], 
        return_tensors="pt",
        add_special_tokens=False
    ).to(model.device)

    # Generate the output
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=512
    )

    # Get and decode the output
    output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
    
    # Return just the text
    return tokenizer.decode(output_ids, skip_special_tokens=True)


@app.post("/v1/models/apertus")
async def completion(data: Completion):
    """Generate an OpenAPI-style completion"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")

    try:
        result = get_model_reponse(data)

        return {
            "choices": [
                {
                    "text": result,
                    "_index": 0,
                    "logprobs": None,
                    "finish_reason": "length"
                }
            ],
            "usage": {
                "prompt_tokens": len(text),
                "completion_tokens": len(result),
                "total_tokens": len(text) + len(result)
            }
        }
    except ValidationError as e:
        raise HTTPException(status_code=400, detail="Invalid input data") from e


@app.get("/predict", response_model=ModelResponse)
async def predict(q: str):
    """Generate a model response for input text"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")

    try:
        import time
        start_time = time.time()

        input_data = TextInput(text=q)

        text = fit_to_length(input_data.text, input_data.min_length, input_data.max_length)

        messages_think = [
            {"role": "user", "content": text}
        ]
        result = get_model_reponse(messages_think)

        # Checkpoint
        processing_time = time.time() - start_time

        return ModelResponse(
            text=result, #['label'],
            confidence=0, #result['score'],
            processing_time=processing_time
        )

    except HTTPException as e:
        logger.error(f"Evaluation error: {e}")
        raise HTTPException(status_code=500, detail="Evaluation failed")

@app.get("/health")
async def health_check():
    """Health check and basic configuration"""
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "gpu_available": cuda.is_available()
    }

if __name__=='__main__':
    uvicorn.run('app:app', reload=True)