File size: 7,680 Bytes
5eb40a3
 
4f97961
b9acf2f
f8c7edf
5eb40a3
 
0494685
 
 
5eb40a3
c53337b
1303c4e
98cad23
ddbaf45
c53337b
98cad23
a9c00ee
c53337b
5eb40a3
c53337b
5eb40a3
 
 
 
1303c4e
98cad23
64d30b7
98cad23
 
5eb40a3
93fa881
 
0494685
93fa881
c53337b
 
 
ddbaf45
0494685
 
 
 
ddbaf45
1303c4e
5eb40a3
 
 
 
c53337b
5eb40a3
 
 
 
 
 
 
 
 
f8c7edf
c53337b
 
f8c7edf
b9acf2f
f8c7edf
 
 
 
 
5eb40a3
 
 
 
 
 
93fa881
5eb40a3
 
 
 
 
 
0494685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64d30b7
5eb40a3
 
 
 
 
a9c00ee
 
 
5eb40a3
 
 
 
 
 
 
93fa881
5eb40a3
 
 
4f97961
 
 
 
 
 
 
 
b9acf2f
 
 
 
 
 
 
 
 
 
 
57411e2
 
 
 
 
b9acf2f
57411e2
c53337b
 
 
 
57411e2
b9acf2f
 
ddbaf45
 
 
 
 
0494685
8072504
ddbaf45
0494685
8072504
b9acf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c53337b
b9acf2f
 
 
 
 
c53337b
b9acf2f
 
 
 
 
 
 
 
 
 
3edc85c
57411e2
 
b9acf2f
c53337b
b9acf2f
c53337b
 
 
 
 
 
 
b9acf2f
 
 
 
 
 
9857cc7
3edc85c
9857cc7
b9acf2f
 
5eb40a3
 
 
 
 
 
 
 
 
 
 
41dfffc
5eb40a3
f8c7edf
 
 
 
5eb40a3
 
 
 
 
47ab1d0
 
5eb40a3
 
 
9857cc7
3edc85c
5eb40a3
 
 
 
 
 
 
 
 
 
1303c4e
93fa881
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ValidationError
from typing import List, Optional

from torch import cuda
from transformers import (
    AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
)

from hashlib import sha256
from huggingface_hub import login
from dotenv import load_dotenv
from datetime import datetime

import os
import uvicorn
import time
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Required for access to a gated model
load_dotenv()
hf_token = os.getenv("HF_TOKEN", None)
if hf_token is not None:
    login(token=hf_token)

# Configurable model identifier
model_name = os.getenv("HF_MODEL", "swiss-ai/Apertus-8B-Instruct-2509")
model_quantization = int(os.getenv("QUANTIZE", 0)) # 8, 4, 0=default

# Configure max tokens
MAX_NEW_TOKENS = 4096

# Load base prompt from a text file
system_prompt = None
if int(os.getenv("USE_SYSTEM_PROMPT", 1)):
    with open('system_prompt.md', 'r') as file:
        system_prompt = file.read()

# Keep data in session
model = None
tokenizer = None

class TextInput(BaseModel):
    text: str = ""
    min_length: int = 3
    # Apertus by default supports a context length up to 65,536 tokens.
    max_length: int = 65536

class ModelResponse(BaseModel):
    text: str
    confidence: float
    processing_time: float

class ChatMessage(BaseModel):
    role: str = "user"
    content: str = ""

class Completion(BaseModel):
    model: str = "apertus"
    messages: List[ChatMessage]
    max_tokens: Optional[int] = 512
    temperature: Optional[float] = 0.1
    top_p: Optional[float] = 0.9

@asynccontextmanager
async def lifespan(app: FastAPI):
    """Load the transformer model on startup"""
    global model, tokenizer
    try:
        logger.info(f"Loading model: {model_name}")

        # Automatically select device based on availability
        device = "cuda" if cuda.is_available() else "cpu"

        # load the tokenizer and the model
        tokenizer = AutoTokenizer.from_pretrained(model_name)

        # Use a quantization setting
        bnb_config = None
        if model_quantization == 8:
            bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        elif model_quantization == 4:
            bnb_config = BitsAndBytesConfig(load_in_4bit=True)
        if bnb_config is not None:
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                device_map="auto",              # Automatically splits model across CPU/GPU
                offload_folder="offload",       # Temporary offload to disk
                low_cpu_mem_usage=True,         # Avoids unnecessary CPU memory duplication
                quantization_config=bnb_config, # To reduce memory and overhead
            )
        else:
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                device_map="auto",              # Automatically splits model across CPU/GPU
                offload_folder="offload",       # Temporary offload to disk
            )
        logger.info(f"Model loaded successfully! ({device})")
    except Exception as e:
        logger.error(f"Failed to load model: {e}")
        raise e
    # Release resources when the app is stopped
    yield
    del model
    del tokenizer
    cuda.empty_cache()


# Setup our app
app = FastAPI(
    title="Apertus API",
    description="REST API for serving Apertus models via Hugging Face transformers",
    version="0.1.0",
    docs_url="/",
    lifespan=lifespan
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


def fit_to_length(text, min_length=3, max_length=100):
    """Truncate text if too long."""
    text = text[:max_length]
    if len(text) == max_length:
        logger.warning("Warning: text truncated")
    if len(text) < min_length:
        logger.warning("Warning: empty text, aborting")
        return None
    return text

def get_completion_text(messages_think: List[ChatMessage]):
    txt = ""
    for cm in messages_think:
        txt = " ".join((txt, cm.content))
    return txt


def get_message_id(txt: str):
    return sha256(str(txt).encode()).hexdigest()


def get_model_reponse(messages_think: List[ChatMessage]):
    """Process the text content."""

    # Apply the system template
    has_system = False
    for m in messages_think:
        if m.role == 'system':
            has_system = True
    if not has_system and system_prompt:
        cm = ChatMessage(role='system', content=system_prompt)
        messages_think.insert(0, cm)
    print(messages_think)

    # Prepare the model input
    text = tokenizer.apply_chat_template(
        messages_think,
        tokenize=False,
        add_generation_prompt=True,
        top_p=0.9,
        temperature=0.8,
    )
    model_inputs = tokenizer(
        [text], 
        return_tensors="pt",
        add_special_tokens=False
    ).to(model.device)

    # Generate the output
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=MAX_NEW_TOKENS
    )

    # Get and decode the output
    output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
    
    # Decode the text message
    return tokenizer.decode(output_ids, skip_special_tokens=True)


@app.post("/v1/models/apertus")
async def completion(data: Completion):
    """Generate an OpenAPI-style completion"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")

    try:
        mt = data.messages
        text = get_completion_text(mt)
        result = get_model_reponse(mt)

        # Standard formatted object
        return {
            "id": get_message_id(text),
            "object": "chat.completion",
            "created": time.time(),
            "model": data.model,
            "choices": [{
                "message": ChatMessage(role="assistant", content=result)
            }],
            "usage": {
                "prompt_tokens": len(text),
                "completion_tokens": len(result),
                "total_tokens": len(text) + len(result)
            }
        }
    except Exception as e:
        logger.warning(e)
        raise HTTPException(status_code=400, detail="Could not process") from e


@app.get("/predict", response_model=ModelResponse)
async def predict(q: str):
    """Generate a model response for input text"""
    if model is None or tokenizer is None:
        raise HTTPException(status_code=503, detail="Model not loaded")

    try:
        start_time = time.time()

        input_data = TextInput(text=q)

        text = fit_to_length(input_data.text, input_data.min_length, input_data.max_length)

        messages_think = [
            {"role": "user", "content": text}
        ]
        result = get_model_reponse(messages_think)

        # Checkpoint
        processing_time = time.time() - start_time

        return ModelResponse(
            text=result, #['label'],
            confidence=0, #result['score'],
            processing_time=processing_time
        )

    except Exception as e:
        logger.warning(e)
        raise HTTPException(status_code=500, detail="Evaluation failed")

@app.get("/health")
async def health_check():
    """Health check and basic configuration"""
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "gpu_available": cuda.is_available()
    }

if __name__=='__main__':
    uvicorn.run('app:app', reload=True)