Spaces:
Runtime error
Runtime error
File size: 31,983 Bytes
8d7600a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
# -*- coding: utf-8 -*-
import os
import base64
import io
import logging # For better logging
# Import specific handlers and formatter
from logging.handlers import RotatingFileHandler
import traceback # For detailed exception logging
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS # To handle Cross-Origin requests from your frontend
import torch
import cv2
import numpy as np
import yaml
from torchvision import transforms
from transformers import SegformerForSemanticSegmentation
from omegaconf import OmegaConf # Import OmegaConf itself
import torch.nn.functional as F
from werkzeug.utils import secure_filename # For safer filenames
# --- Configuration ---
# Use absolute paths for robustness
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # Directory where this script is running
# >>> Point this to your actual config file <<<
CONFIG_PATH = os.path.join(BASE_DIR, "config/config.yaml") # Assuming config.yaml is in the same dir
# >>> Point this to your actual checkpoint file <<<
CHECKPOINT_PATH = "ckpt_000-vloss_0.4685_vf1_0.6469.ckpt"
UPLOAD_FOLDER = os.path.join(BASE_DIR, 'uploads')
RESULT_FOLDER = os.path.join(BASE_DIR, 'results')
LOG_FILE_PATH = os.path.join(BASE_DIR, 'flask_app.log') # Define log file path
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'bmp', 'tif', 'tiff'}
# --- Logging Setup ---
# Clear existing handlers from the root logger to avoid duplicates on reload
logging.getLogger().handlers.clear()
# Create formatter
log_formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d - %(message)s')
# Create Console Handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_formatter)
# Create File Handler (using RotatingFileHandler for log rotation)
file_handler = RotatingFileHandler(LOG_FILE_PATH, maxBytes=5*1024*1024, backupCount=3)
file_handler.setFormatter(log_formatter)
# Get the root logger and add handlers
logger = logging.getLogger()
logger.setLevel(logging.INFO) # Set minimum level for the logger (e.g., INFO, DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
# --- Ensure upload and result directories exist ---
try:
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
logger.info(f"Ensured directories exist: {UPLOAD_FOLDER}, {RESULT_FOLDER}")
except OSError as e:
logger.error(f"Error creating directories: {e}")
exit(1) # Exit if we can't create essential folders
# --- Load Config ---
config = None
try:
# Load the YAML file using OmegaConf
config = OmegaConf.load(CONFIG_PATH)
# Note: We don't need OmegaConf.create() if loading directly from file
logger.info(f"Configuration loaded successfully from: {CONFIG_PATH}")
# Log some key values to confirm loading
logger.info(f"Config check: num_classes={config.data.num_classes}, model_name={config.training.model_name}")
except FileNotFoundError:
logger.error(f"Configuration file not found: {CONFIG_PATH}")
exit(1)
except Exception as e: # Catch broader errors during loading/parsing
logger.error(f"Error loading or parsing configuration file '{CONFIG_PATH}': {e}")
logger.error(traceback.format_exc())
exit(1)
# --- Model Definition ---
class InferenceModel(torch.nn.Module):
def __init__(self, model_config): # Use local name 'model_config'
super().__init__()
try:
# Access config values needed for model init
model_name = model_config.training.model_name
num_classes = model_config.data.num_classes
logger.info(f"Initializing SegformerForSemanticSegmentation with model='{model_name}', num_labels={num_classes}")
self.model = SegformerForSemanticSegmentation.from_pretrained(
model_name,
num_labels=num_classes,
ignore_mismatched_sizes=True # Important if fine-tuning head size differs
)
logger.info("Segformer model part initialized.")
except AttributeError as ae:
logger.error(f"Config error during model init: Missing key? {ae}")
logger.error(f"Check if 'training.model_name' and 'data.num_classes' exist in {CONFIG_PATH}")
raise # Re-raise error to stop execution
except Exception as e:
logger.error(f"Error initializing Segformer model from Hugging Face: {e}")
logger.error(traceback.format_exc())
raise # Re-raise error to stop execution
def forward(self, x):
# Expects pixel_values as input
outputs = self.model(pixel_values=x, return_dict=True)
# Upsample logits to original input size
logits = F.interpolate(
outputs.logits,
size=x.shape[-2:], # Get H, W from input tensor x
mode="bilinear",
align_corners=False
)
return logits
# --- Utility Functions ---
def num_to_rgb(num_arr, color_map_dict):
"""Converts a label mask (numpy array) to an RGB color mask."""
single_layer = np.squeeze(num_arr)
output = np.zeros(num_arr.shape[:2] + (3,), dtype=np.uint8) # Initialize with uint8 zeros
# Expects color_map_dict to be a standard Python dict {int_label: [R, G, B]}
if not isinstance(color_map_dict, dict):
logger.error(f"Invalid color_map provided to num_to_rgb: {type(color_map_dict)}. Expected dict.")
return np.float32(output) / 255.0 # Return black float image
unique_labels = np.unique(single_layer)
for k in unique_labels:
label_key = int(k) # Ensure key is standard int for lookup
if label_key in color_map_dict:
# Assign color, ensure color value is appropriate (e.g., list/tuple of 3 ints)
color = color_map_dict[label_key]
if isinstance(color, (list, tuple)) and len(color) == 3:
output[single_layer == k] = color
else:
logger.warning(f"Invalid color format for label {label_key} in color map: {color}. Skipping.")
else:
if label_key != 0: # Often 0 is background, might not be in map
logger.warning(f"Label Key {label_key} found in mask but not in provided color map.")
# Default color (e.g., black) is already set by np.zeros
return np.float32(output) / 255.0 # Return float32 RGB image [0, 1]
def denormalize(tensor, mean, std):
"""Denormalizes a torch tensor (CHW format)."""
# Expects standard Python lists/tuples for mean/std
if not isinstance(mean, (list, tuple)) or not isinstance(std, (list, tuple)):
logger.error(f"Mean ({type(mean)}) or std ({type(std)}) are not lists/tuples in denormalize.")
return None
# Input tensor expected shape: Batch, Channel, Height, Width (e.g., from dataloader or transform)
if tensor.dim() != 4: # B C H W
logger.error(f"Unexpected tensor dimension {tensor.dim()} in denormalize. Expected 4 (BCHW).")
# Attempt to add batch dim if it's 3D (CHW)
if tensor.dim() == 3:
logger.warning("Denormalize received 3D tensor, adding batch dimension.")
tensor = tensor.unsqueeze(0)
else:
return None # Cannot handle other dims
num_channels = tensor.shape[1] # Channel dimension
if len(mean) != num_channels or len(std) != num_channels:
logger.error(f"Mean/std length ({len(mean)}/{len(std)}) mismatch with tensor channels ({num_channels})")
return None
# Clone to avoid modifying original tensor
tensor = tensor.clone().cpu() # Work on CPU copy
# Denormalize each channel
for c in range(num_channels):
tensor[:, c, :, :] = tensor[:, c, :, :] * std[c] + mean[c] # Apply to all items in batch
# Clamp values, remove batch dimension, permute to HWC for display/saving
# Assumes we are processing one image at a time here for inference result
denormalized_img_tensor = torch.clamp(tensor.squeeze(0), 0, 1).permute(1, 2, 0)
return denormalized_img_tensor.numpy() # Convert to numpy array (HWC, float32, [0,1])
# --- Load Model (Corrected Version) ---
def load_trained_model(checkpoint_path, model_config):
"""Loads the trained model from a checkpoint, handling potential key mismatches."""
try:
model_instance = InferenceModel(model_config) # Create model structure
logger.info(f"Attempting to load checkpoint from: {checkpoint_path}")
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint file not found at specified path: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
logger.info(f"Checkpoint loaded into memory. Type: {type(checkpoint)}")
# Extract the state dictionary - flexible based on common saving patterns
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
logger.info("Using 'state_dict' key from checkpoint.")
elif isinstance(checkpoint, dict):
# Assume the dict *is* the state_dict if 'state_dict' key is absent
state_dict = checkpoint
logger.info("Using checkpoint dictionary directly as state_dict (no 'state_dict' key found).")
else:
# Could be the model itself was saved directly (less common with frameworks)
logger.warning(f"Checkpoint is not a dictionary. Attempting to load directly into model (less common). Type was: {type(checkpoint)}")
# This path might need adjustment based on how the model was saved if not a state_dict
try:
model_instance.load_state_dict(checkpoint) # Try loading directly
logger.info("Loaded state_dict directly from checkpoint object.")
model_instance.eval()
return model_instance
except Exception as e:
logger.error(f"Failed to load state_dict directly from checkpoint object: {e}")
return None # Failed direct load
# --- Key Prefix Correction Logic ---
target_keys = set(model_instance.state_dict().keys())
loaded_keys = set(state_dict.keys())
if not loaded_keys: logger.warning("Loaded state_dict is empty!"); return None # Check if state_dict is empty
first_loaded_key = next(iter(loaded_keys), None)
first_target_key = next(iter(target_keys), None)
corrected_state_dict = {}
prefix_added = False
# Check if prefix 'model.' needs to be ADDED to loaded keys
if first_loaded_key and not first_loaded_key.startswith('model.') and \
first_target_key and first_target_key.startswith('model.'):
logger.warning("Checkpoint keys missing 'model.' prefix. Attempting to add it.")
prefix_added = True
keys_not_prefixed_properly = []
for k, v in state_dict.items():
new_key = f"model.{k}"
if new_key in target_keys: corrected_state_dict[new_key] = v
else: keys_not_prefixed_properly.append(k); corrected_state_dict[k] = v # Keep original if prefixed version not wanted
if keys_not_prefixed_properly: logger.warning(f"Keys kept without prefix (target doesn't expect): {keys_not_prefixed_properly}")
logger.info("Finished attempting prefix addition.")
# Check if prefix 'model.' needs to be REMOVED from loaded keys
elif first_loaded_key and first_loaded_key.startswith('model.') and \
first_target_key and not first_target_key.startswith('model.'):
logger.warning("Checkpoint keys HAVE 'model.' prefix, but target model DOES NOT. Attempting to remove it.")
prefix_added = False # Indicate we removed prefix, not added
keys_not_stripped_properly = []
for k, v in state_dict.items():
if k.startswith('model.'):
new_key = k.partition('model.')[2] # Get part after 'model.'
if new_key in target_keys: corrected_state_dict[new_key] = v
else: keys_not_stripped_properly.append(k); corrected_state_dict[k] = v # Keep original if stripped version not wanted
else:
# Keep keys that didn't have prefix anyway
corrected_state_dict[k] = v
if keys_not_stripped_properly: logger.warning(f"Keys kept with prefix (target doesn't expect stripped): {keys_not_stripped_properly}")
logger.info("Finished attempting prefix removal.")
else:
logger.info("State dict keys seem to have correct prefix structure (or other mismatch). Using as is.")
corrected_state_dict = state_dict # Use the original dict
# --- Load the State Dictionary ---
logger.info("Attempting to load state_dict with strict=False for checking...")
missing_keys, unexpected_keys = model_instance.load_state_dict(corrected_state_dict, strict=False)
# Report detailed findings
final_msg = []
is_load_successful = True
if missing_keys:
final_msg.append(f"MISSING keys in checkpoint: {missing_keys}")
logger.error("CRITICAL FAILURE: Model is missing required keys.")
is_load_successful = False
if unexpected_keys:
final_msg.append(f"UNEXPECTED keys in checkpoint (exist in file but not in model): {unexpected_keys}")
# Decide if unexpected keys are acceptable
acceptable_unexpected = [k for k in unexpected_keys if k.endswith('num_batches_tracked')]
unacceptable_unexpected = [k for k in unexpected_keys if not k.endswith('num_batches_tracked')]
if unacceptable_unexpected:
logger.error(f"CRITICAL FAILURE: Model received unacceptable unexpected keys: {unacceptable_unexpected}")
is_load_successful = False
elif acceptable_unexpected:
logger.warning(f"Ignoring acceptable unexpected keys: {acceptable_unexpected}")
if not is_load_successful:
logger.error(f"State dict loading failed. Issues: {'; '.join(final_msg)}")
return None # Failed to load properly
logger.info(f"State dictionary loaded successfully. Issues (if any): {final_msg if final_msg else 'None'}")
model_instance.eval() # Set to evaluation mode
logger.info(f"Model loading process complete for {checkpoint_path}")
return model_instance
except FileNotFoundError as fnf_error:
logger.error(f"{fnf_error}") # Log the specific FileNotFoundError message
return None
except Exception as e:
logger.error(f"Unexpected error during model loading: {e}")
logger.error(traceback.format_exc()) # Log full traceback
return None
# --- Determine device & Load Model Globally ---
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Load the model using the global config object
model = load_trained_model(CHECKPOINT_PATH, config) # Pass the loaded config
if model is None:
logger.critical("CRITICAL: Failed to load model. Application cannot continue.")
exit(1) # Critical error, stop the application
model.to(device) # Move model to the appropriate device
# --- Inference Pipeline (Corrected Config Handling) ---
def run_inference_on_bytes(image_bytes, inference_model, model_config, device):
"""Runs inference on image bytes, returns denormalized image, color mask, and overlay."""
try:
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None: logger.error("Failed cv2.imdecode."); return None, None, None
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
logger.debug("Image decoded and converted to RGB.")
# --- Preprocessing (with config conversion) ---
# Check necessary config attributes exist before conversion attempt
required_data_keys = ['image_size', 'mean', 'std', 'num_classes']
for key in required_data_keys:
if not OmegaConf.select(model_config, f'data.{key}', default=None):
logger.error(f"Config missing required data field: data.{key}")
return None, None, None
if not OmegaConf.select(model_config, 'id2color', default=None):
logger.error("Config missing required field: id2color")
return None, None, None
if not OmegaConf.select(model_config, 'training.model_name', default=None):
logger.error("Config missing required field: training.model_name")
return None, None, None
try:
# Convert OmegaConf structures to standard Python types using OmegaConf.to_container
# resolve=True handles variable interpolation (like ${data.base_dir}) if used in relevant fields
img_size = tuple(OmegaConf.to_container(model_config.data.image_size, resolve=True))
mean = list(OmegaConf.to_container(model_config.data.mean, resolve=True))
std = list(OmegaConf.to_container(model_config.data.std, resolve=True))
# Ensure keys in id2color are standard integers
id2color_map = {int(k): v for k, v in OmegaConf.to_container(model_config.id2color, resolve=True).items()}
num_classes = int(model_config.data.num_classes) # Ensure int
logger.debug(f"Converted config values: size={img_size}, mean={mean}, std={std}, id2color keys={list(id2color_map.keys())}, num_classes={num_classes}")
# Basic validation after conversion
if not isinstance(mean, list) or not isinstance(std, list) or not isinstance(id2color_map, dict): raise TypeError("Config values did not convert to list/dict.")
if len(mean) != 3 or len(std) != 3: raise ValueError(f"Incorrect mean/std length. Expected 3.") # Assuming 3 color channels
if len(img_size) != 2: raise ValueError(f"Incorrect image_size length. Expected 2 (H, W).")
except Exception as e:
logger.error(f"Error processing/converting configuration values: {e}")
logger.error(traceback.format_exc())
return None, None, None
# Define the image transformation pipeline
transform = transforms.Compose([
transforms.ToTensor(), # HWC [0,255] numpy -> CHW [0,1] torch
transforms.Resize(img_size, interpolation=transforms.InterpolationMode.BILINEAR), # Use converted tuple size, BILINEAR is common for images before model
transforms.Normalize(mean=mean, std=std) # Use converted lists
])
logger.debug(f"Image transform applied for size {img_size}.")
input_tensor = transform(img_rgb).unsqueeze(0).to(device) # Add batch dim (B=1), move to device
logger.debug(f"Input tensor created with shape: {input_tensor.shape}") # Should be [1, 3, H, W]
# --- Run Prediction ---
with torch.no_grad():
logits = inference_model(input_tensor) # Expect [B, C, H, W] logits
logger.debug(f"Logits received with shape: {logits.shape}")
# Check logits shape again after potential upsampling in model forward
if logits.dim() != 4 or logits.shape[1] != num_classes:
logger.error(f"Unexpected final logits shape or class number: {logits.shape}. Expected B x {num_classes} x H x W.")
return None, None, None
# Argmax along class dimension (C), remove batch dim, move to CPU, convert type
pred_mask = logits.argmax(1).squeeze(0).cpu().numpy().astype(np.uint8) # H W, uint8
logger.debug(f"Prediction mask generated with shape: {pred_mask.shape}") # Should be [H, W]
# --- Post-processing ---
color_mask = num_to_rgb(pred_mask, id2color_map) # Use converted map
if color_mask is None: logger.error("num_to_rgb failed."); return None, None, None
logger.debug("Color mask generated.")
# Denormalize the *input tensor* for overlay display
denorm_img = denormalize(input_tensor, mean, std) # Use converted mean/std
if denorm_img is None: logger.error("denormalize failed."); return None, None, None
logger.debug("Input tensor denormalized for overlay.") # HWC, float32, [0,1]
# --- Create Overlay ---
# Ensure shapes match before blending (resize color mask to match denorm_img)
if denorm_img.shape[:2] != color_mask.shape[:2]:
logger.warning(f"Denorm img shape {denorm_img.shape[:2]} != Color mask shape {color_mask.shape[:2]}. Resizing color mask using INTER_NEAREST.")
# Resize color_mask (HWC float32) to match denorm_img (HWC float32)
color_mask = cv2.resize(color_mask, (denorm_img.shape[1], denorm_img.shape[0]), interpolation=cv2.INTER_NEAREST) # Use INTER_NEAREST for label masks
# Blend images: Original (denorm_img) * alpha + Mask (color_mask) * beta + gamma
overlay = cv2.addWeighted(denorm_img, 0.7, color_mask, 0.3, 0)
logger.debug("Overlay created using cv2.addWeighted.")
# overlay is HWC, float32, [0, 1], RGB
return denorm_img, color_mask, overlay
except Exception as e:
logger.error(f"Exception during inference pipeline for image: {e}")
logger.error(traceback.format_exc())
return None, None, None
# --- Flask App ---
app = Flask(__name__)
CORS(app) # Allow all origins for API and Result routes resources={r"/api/*": {"origins": "*"}, r"/Result/*": {"origins": "*"}}
logger.info("Flask app created and CORS enabled.")
def allowed_file(filename):
"""Checks if the filename has an allowed extension."""
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# --- API Endpoints ---
@app.route('/api/analyze', methods=['POST'])
def analyze_image():
"""Receives Base64 image, runs inference, saves original and overlay."""
global model, config, device # Access global vars
endpoint_log_prefix = "[POST /api/analyze]"
logger.info(f"{endpoint_log_prefix} Received request.")
# --- Basic Checks ---
if model is None: logger.error(f"{endpoint_log_prefix} Model not loaded."); return jsonify({"success": False, "message": "Model not loaded"}), 500
if not request.is_json: logger.warning(f"{endpoint_log_prefix} Not JSON."); return jsonify({"success": False, "message": "Request must be JSON"}), 400
data = request.get_json()
if not data or 'image' not in data or 'filename' not in data:
logger.warning(f"{endpoint_log_prefix} Missing image/filename in JSON body. Data received: {data}")
return jsonify({"success": False, "message": "Missing 'image' (base64) or 'filename' in JSON body"}), 400
base64_image_data = data['image']; original_filename = data['filename']
logger.info(f"{endpoint_log_prefix} Original filename from request: '{original_filename}'")
safe_original_filename = secure_filename(original_filename) # Sanitize
if not safe_original_filename or not allowed_file(safe_original_filename):
logger.warning(f"{endpoint_log_prefix} Invalid/disallowed filename after sanitization: '{safe_original_filename}' from '{original_filename}'")
return jsonify({"success": False, "message": "Invalid or disallowed filename/extension"}), 400
logger.info(f"{endpoint_log_prefix} Sanitized filename for saving/processing: '{safe_original_filename}'")
try:
# --- Decode Base64 ---
if ',' in base64_image_data: header, encoded = base64_image_data.split(',', 1)
else: encoded = base64_image_data # Assume no header
image_bytes = base64.b64decode(encoded)
logger.info(f"{endpoint_log_prefix} Base64 image decoded ({len(image_bytes)} bytes).")
# --- Save Original Image ---
original_path = os.path.join(UPLOAD_FOLDER, safe_original_filename)
try:
with open(original_path, "wb") as f: f.write(image_bytes)
logger.info(f"{endpoint_log_prefix} Original image saved to: '{original_path}'")
except Exception as e:
logger.error(f"{endpoint_log_prefix} Failed to save original image to '{original_path}': {e}")
return jsonify({"success": False, "message": "Failed to save uploaded image on server"}), 500
# --- Run Inference ---
logger.info(f"{endpoint_log_prefix} Starting inference for '{safe_original_filename}'...")
# Pass the global config object here
denorm_img, color_mask, overlay = run_inference_on_bytes(image_bytes, model, config, device)
if overlay is None: # Check if inference failed
logger.error(f"{endpoint_log_prefix} Inference pipeline returned None for '{safe_original_filename}'.")
return jsonify({"success": False, "message": "Inference process failed on server"}), 500
logger.info(f"{endpoint_log_prefix} Inference completed successfully for '{safe_original_filename}'.")
# --- Save Overlay Image ---
name_part, ext = os.path.splitext(safe_original_filename)
# Create consistent overlay filename (crucial for toggle endpoint)
overlay_filename = f"analyzed_{name_part}{ext}"
overlay_path = os.path.join(RESULT_FOLDER, overlay_filename)
logger.info(f"{endpoint_log_prefix} Determined overlay filename: '{overlay_filename}' -> path: '{overlay_path}'")
# Convert overlay (float32 HWC RGB [0,1]) to uint8 HWC BGR [0,255] for cv2.imwrite
try:
overlay_to_save_uint8 = (overlay * 255).astype(np.uint8)
overlay_to_save_bgr = cv2.cvtColor(overlay_to_save_uint8, cv2.COLOR_RGB2BGR)
save_success = cv2.imwrite(overlay_path, overlay_to_save_bgr)
if not save_success:
raise IOError(f"cv2.imwrite failed to save the overlay image to {overlay_path}")
logger.info(f"{endpoint_log_prefix} Overlay image saved successfully to: '{overlay_path}'")
except Exception as e:
logger.error(f"{endpoint_log_prefix} Failed to convert or save overlay image to '{overlay_path}': {e}")
logger.error(traceback.format_exc())
return jsonify({"success": False, "message": "Failed to save analysis result image"}), 500
# --- Success Response ---
logger.info(f"{endpoint_log_prefix} Analysis successful for '{safe_original_filename}'. Returning success.")
return jsonify({
"success": True,
"message": "Analysis complete",
# Optionally return relative paths for info, client mainly needs overlay_filename
"paths": {"original": os.path.relpath(original_path, BASE_DIR), "overlay": os.path.relpath(overlay_path, BASE_DIR)},
"overlay_filename": overlay_filename # Return the *exact* filename saved
}), 200
except base64.binascii.Error as e:
logger.error(f"{endpoint_log_prefix} Invalid Base64 data received: {e}")
return jsonify({"success": False, "message": "Invalid Base64 image data received"}), 400
except Exception as e:
logger.error(f"{endpoint_log_prefix} Unexpected error during analysis request processing: {e}")
logger.error(traceback.format_exc())
return jsonify({"success": False, "message": "Internal server error during analysis processing"}), 500
@app.route('/api/toggle-image', methods=['GET'])
def get_analysis_path():
"""Checks if the analyzed version of a given original filename exists."""
endpoint_log_prefix = "[GET /api/toggle-image]"
logger.info(f"{endpoint_log_prefix} Received request.")
logger.info(f"{endpoint_log_prefix} Full request URL: {request.url}")
logger.info(f"{endpoint_log_prefix} Request Query Args: {request.args}") # Log received args
original_filename = request.args.get('filename') # Get filename from ?filename=...
if not original_filename:
logger.warning(f"{endpoint_log_prefix} Missing 'filename' query parameter.")
return jsonify({"message": "Missing 'filename' query parameter"}), 400
logger.info(f"{endpoint_log_prefix} Original filename received from query: '{original_filename}'")
safe_original_filename = secure_filename(original_filename) # Sanitize
if not safe_original_filename:
logger.warning(f"{endpoint_log_prefix} Invalid filename after sanitization: '{safe_original_filename}' from '{original_filename}'")
return jsonify({"message": "Invalid filename format"}), 400
logger.info(f"{endpoint_log_prefix} Sanitized filename for lookup: '{safe_original_filename}'")
# --- Construct Expected Overlay Path (MUST match /analyze logic) ---
name_part, ext = os.path.splitext(safe_original_filename)
expected_overlay_filename = f"analyzed_{name_part}{ext}"
expected_overlay_path = os.path.join(RESULT_FOLDER, expected_overlay_filename)
logger.info(f"{endpoint_log_prefix} Expecting overlay file at: '{expected_overlay_path}'")
# --- Check if File Exists ---
if os.path.exists(expected_overlay_path):
logger.info(f"{endpoint_log_prefix} Found analysis result file: '{expected_overlay_filename}'")
# Return just the filename, client constructs the full /Result/ URL
return jsonify({"filepath": expected_overlay_filename}), 200
else:
# Explicitly log the path that was checked and not found
logger.warning(f"{endpoint_log_prefix} Analysis result file NOT FOUND at checked path: '{expected_overlay_path}'")
# Return 404 Not Found status code
return jsonify({"message": f"Analysis result not found for '{original_filename}'"}), 404
@app.route('/Result/<filename>')
def serve_result_image(filename):
"""Serves images from the RESULT_FOLDER."""
endpoint_log_prefix = "[GET /Result]"
# Sanitize filename received in URL path for security
safe_filename = secure_filename(filename)
if safe_filename != filename:
# Log if the requested filename was changed by sanitization
logger.warning(f"{endpoint_log_prefix} Requested filename '{filename}' was sanitized to '{safe_filename}'. Serving sanitized version.")
logger.info(f"{endpoint_log_prefix} Attempting to serve file: '{safe_filename}' from directory: '{RESULT_FOLDER}'")
try:
# Use Flask's send_from_directory - safer than manual path joining
# as_attachment=False means display in browser if possible
return send_from_directory(RESULT_FOLDER, safe_filename, as_attachment=False)
except FileNotFoundError:
# Log the specific file that was not found
logger.error(f"{endpoint_log_prefix} Requested file not found in result folder: '{safe_filename}'")
# Return 404 Not Found
return jsonify({"message": "Requested analysis image not found"}), 404
except Exception as e:
# Catch other potential errors (e.g., permission issues)
logger.error(f"{endpoint_log_prefix} Error serving file '{safe_filename}': {e}")
logger.error(traceback.format_exc())
# Return 500 Internal Server Error
return jsonify({"message": "Error serving analysis image"}), 500
# --- Main Execution ---
if __name__ == '__main__':
# Ensure model loaded successfully before starting server
if model:
logger.info("Model loaded successfully. Starting Flask development server...")
# Use debug=True for development (auto-reload, debugger)
# Use debug=False for production!
# host='0.0.0.0' makes it accessible on the network
app.run(host='0.0.0.0', port=7860, debug=True)
else:
# This message should appear if load_trained_model returned None
logger.critical("APPLICATION FAILED TO START: MODEL COULD NOT BE LOADED.")
# Exit code 1 indicates an error
exit(1) |