OCRdeepSeekService / ocr_service.py
make789's picture
Upload 5 files
19073ac verified
raw
history blame
29.1 kB
import asyncio
import json
import math
import os
import platform
import secrets
import tempfile
from collections import defaultdict, deque
from time import monotonic
from typing import Any, Deque, DefaultDict, Optional
from pathlib import Path
import numpy as np
from fastapi import Depends, FastAPI, Form, HTTPException, Request, UploadFile, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import APIKeyHeader
from PIL import Image
# Lazy import DeepSeek-OCR dependencies (only load when needed)
_torch = None
_transformers = None
def _get_torch():
global _torch
if _torch is None:
try:
import torch
_torch = torch
except ImportError:
raise RuntimeError(
"torch is not installed. Install with: pip install torch"
)
return _torch
def _get_transformers():
global _transformers
if _transformers is None:
try:
from transformers import AutoModel, AutoTokenizer
_transformers = (AutoModel, AutoTokenizer)
except ImportError:
raise RuntimeError(
"transformers is not installed. Install with: pip install transformers"
)
return _transformers
# Import llm_splitter (works as module or direct import)
try:
from llm_splitter import call_llm_splitter
except ImportError:
# Fallback for relative import
try:
from .llm_splitter import call_llm_splitter
except ImportError:
# If llm_splitter doesn't exist, define a stub
async def call_llm_splitter(*args, **kwargs):
raise NotImplementedError("llm_splitter not available")
ALLOWED_CONTENT_TYPES = {
"image/jpeg",
"image/png",
"image/webp",
}
MAX_UPLOAD_BYTES = int(os.getenv("MAX_UPLOAD_BYTES", str(5 * 1024 * 1024)))
RATE_LIMIT_REQUESTS = int(os.getenv("RATE_LIMIT_REQUESTS", "30"))
RATE_LIMIT_WINDOW_SECONDS = float(os.getenv("RATE_LIMIT_WINDOW_SECONDS", "60"))
# Allow API key to be optional for development (security risk in production!)
SERVICE_API_KEY = os.getenv("SERVICE_API_KEY", "dev-key-change-in-production")
REQUIRE_API_KEY = os.getenv("REQUIRE_API_KEY", "false").lower() == "true"
API_KEY_HEADER_NAME = "X-API-Key"
MAX_CHILD_LINES = 500
MAX_JSON_DEPTH = 4
MAX_JSON_STRING_LENGTH = 512
MAX_JSON_DICT_KEYS = 50
MAX_JSON_LIST_ITEMS = 100
# DeepSeek-OCR Model Configuration - Maximum Quality Settings for M4 Mac (Apple Silicon)
MODEL_NAME = "deepseek-ai/DeepSeek-OCR"
# Detect Apple Silicon (M1/M2/M3/M4) - use MPS if available, otherwise CPU
IS_APPLE_SILICON = platform.machine() == "arm64"
USE_GPU = os.getenv("USE_GPU", "true").lower() == "true" and not IS_APPLE_SILICON # M4 uses MPS, not CUDA
USE_MPS = IS_APPLE_SILICON # Use Metal Performance Shaders on Apple Silicon
# Maximum quality settings (larger = better, slower = more accurate)
BASE_SIZE = int(os.getenv("DEEPSEEK_BASE_SIZE", "1280")) # Maximum quality: 1280 (not light!)
IMAGE_SIZE = int(os.getenv("DEEPSEEK_IMAGE_SIZE", "1280")) # Maximum quality: 1280 (not light!)
CROP_MODE = os.getenv("DEEPSEEK_CROP_MODE", "true").lower() == "true" # True for best accuracy
app = FastAPI()
# Add CORS middleware to allow frontend requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, replace with specific origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize DeepSeek-OCR model
_ocr_model = None
_ocr_tokenizer = None
_model_lock = asyncio.Lock()
def _patch_deepseek_model_for_m4():
"""
Patch DeepSeek-OCR model code to fix LlamaFlashAttention2 import error on M4 Mac.
This is needed because transformers 4.57.1 doesn't have LlamaFlashAttention2,
but DeepSeek-OCR's model code tries to import it.
"""
from pathlib import Path
cache_dir = Path.home() / ".cache" / "huggingface"
model_files = list(cache_dir.glob("**/modeling_deepseekv2.py"))
if not model_files:
return # Model not downloaded yet, will patch on first load
model_file = model_files[0]
# Check if already patched
try:
with open(model_file, 'r') as f:
content = f.read()
if "LlamaFlashAttention2 = LlamaAttention" in content:
return # Already patched
except:
pass
# Original import pattern
original_import = """from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaFlashAttention2
)"""
# Patched version with fallback
patched_import = """from transformers.models.llama.modeling_llama import (
LlamaAttention,
)
# Patch for M4 Mac: LlamaFlashAttention2 not available in transformers 4.57.1
# Use LlamaAttention as fallback when flash attention unavailable
try:
from transformers.models.llama.modeling_llama import LlamaFlashAttention2
except ImportError:
# Fallback: Use LlamaAttention when flash attention not available
LlamaFlashAttention2 = LlamaAttention"""
try:
if original_import in content:
# Create backup
backup_file = model_file.with_suffix('.py.backup')
try:
with open(backup_file, 'w') as f:
f.write(content)
except:
pass
# Apply patch
content = content.replace(original_import, patched_import)
with open(model_file, 'w') as f:
f.write(content)
print(f"✅ Patched DeepSeek model for M4 Mac compatibility")
except Exception as e:
print(f"⚠️ Could not patch model file: {e}")
async def get_ocr_model():
"""Lazy load DeepSeek-OCR model with M4 Mac compatibility patching"""
global _ocr_model, _ocr_tokenizer
if _ocr_model is None or _ocr_tokenizer is None:
async with _model_lock:
if _ocr_model is None or _ocr_tokenizer is None:
# Patch DeepSeek model code for M4 Mac compatibility BEFORE loading
_patch_deepseek_model_for_m4()
# Lazy import dependencies
AutoModel, AutoTokenizer = _get_transformers()
torch = _get_torch()
print(f"Loading DeepSeek-OCR model (MAXIMUM QUALITY): {MODEL_NAME}")
print(f" - Base size: {BASE_SIZE} (maximum quality, not light version!)")
print(f" - Image size: {IMAGE_SIZE} (maximum quality, not light version!)")
print(f" - Crop mode: {CROP_MODE} (best accuracy)")
_ocr_tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME, trust_remote_code=True
)
# Load model with Apple Silicon (M4) optimized settings
# M4 Mac: Use SDPA (not flash_attention_2) - flash attention doesn't work on Apple Silicon
load_kwargs = {
"trust_remote_code": True,
"use_safetensors": False, # Avoid safetensors issues on M4
}
# Force SDPA attention for Apple Silicon compatibility
# This avoids LlamaFlashAttention2 import errors on M4 Mac
if IS_APPLE_SILICON:
load_kwargs["_attn_implementation"] = "sdpa"
print(" - Using SDPA attention (Apple Silicon/M4 optimized)")
else:
# For non-Apple Silicon, let model choose
pass
try:
_ocr_model = AutoModel.from_pretrained(MODEL_NAME, **load_kwargs)
except Exception as e:
error_msg = str(e)
print(f"⚠️ Model load error: {error_msg}")
# If still fails, try minimal config
if "LlamaFlashAttention2" in error_msg or "flash" in error_msg.lower():
print(" - Retrying with explicit SDPA attention...")
load_kwargs_minimal = {
"trust_remote_code": True,
"use_safetensors": False,
"_attn_implementation": "sdpa", # Force SDPA
}
_ocr_model = AutoModel.from_pretrained(MODEL_NAME, **load_kwargs_minimal)
else:
raise
_ocr_model = _ocr_model.eval()
# Handle device placement for M4 Mac (Apple Silicon)
if USE_MPS and torch.backends.mps.is_available():
_ocr_model = _ocr_model.to("mps")
print(" - DeepSeek-OCR loaded on Apple Silicon GPU (MPS/M4)")
elif USE_GPU and torch.cuda.is_available():
_ocr_model = _ocr_model.cuda().to(torch.bfloat16)
print(" - DeepSeek-OCR loaded on NVIDIA GPU")
else:
print(" - DeepSeek-OCR loaded on CPU")
return _ocr_model, _ocr_tokenizer
async def run_deepseek_ocr(
image_path: str,
prompt: str = "<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
use_grounding: bool = True
) -> dict:
"""
Run DeepSeek-OCR on an image file with advanced grounding support.
Genius enhancement: Uses grounding prompts for better structure extraction
and layout preservation, following DeepSeek-OCR best practices.
"""
model, tokenizer = await get_ocr_model()
output_path = tempfile.mkdtemp()
try:
# Maximum quality inference - best OCR quality settings
result = model.infer(
tokenizer,
prompt=prompt,
image_file=image_path,
output_path=output_path,
base_size=BASE_SIZE, # 1280 = maximum quality (not light version!)
image_size=IMAGE_SIZE, # 1280 = maximum quality (not light version!)
crop_mode=CROP_MODE, # True = best accuracy for complex documents
save_results=False,
test_compress=False, # False = maximum quality, no compression
)
# Parse result - DeepSeek-OCR returns structured markdown output
ocr_text = result if isinstance(result, str) else str(result)
# Genius parsing: Extract structured lines from markdown with better layout awareness
lines = _parse_deepseek_output(ocr_text)
return {
"text": ocr_text,
"lines": lines,
}
except Exception as e:
print(f"DeepSeek-OCR error: {e}")
import traceback
traceback.print_exc()
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"OCR processing failed: {str(e)}",
)
finally:
# Cleanup temp directory
try:
import shutil
if os.path.exists(output_path):
shutil.rmtree(output_path)
except:
pass
def _parse_deepseek_output(ocr_text: str) -> list:
"""
Genius parser: Extract structured lines from DeepSeek-OCR markdown output.
Preserves layout, handles tables, lists, and structured content.
"""
lines = []
text_lines = ocr_text.split('\n')
y_offset = 0
line_height = 24 # Estimated line height in pixels
for line_idx, line in enumerate(text_lines):
stripped = line.strip()
if not stripped:
# Empty lines still take space
y_offset += line_height // 2
continue
# Remove markdown formatting but preserve text structure
# Handle markdown tables (| separated)
if '|' in stripped and stripped.count('|') >= 2:
# Table row - split by | and process each cell
cells = [cell.strip() for cell in stripped.split('|') if cell.strip()]
for cell_idx, cell in enumerate(cells):
if cell:
lines.append({
"bbox": [
cell_idx * 200, # Approximate x position
y_offset,
(cell_idx + 1) * 200,
y_offset + line_height
],
"text": cell,
"conf": 0.95,
})
y_offset += line_height
# Handle markdown lists (-, *, 1., etc.)
elif stripped.startswith(('-', '*', '+')) or (len(stripped) > 2 and stripped[1] == '.'):
# List item - remove list marker
text = stripped.lstrip('-*+').lstrip('0123456789.').strip()
if text:
lines.append({
"bbox": [40, y_offset, 1000, y_offset + line_height],
"text": text,
"conf": 0.95,
})
y_offset += line_height
# Handle headers (# ## ###)
elif stripped.startswith('#'):
header_level = len(stripped) - len(stripped.lstrip('#'))
text = stripped.lstrip('#').strip()
if text:
# Headers are typically larger
header_height = line_height + (header_level * 4)
lines.append({
"bbox": [0, y_offset, 1000, y_offset + header_height],
"text": text,
"conf": 0.95,
})
y_offset += header_height
# Regular text line
else:
# Estimate width based on text length (rough approximation)
estimated_width = min(len(stripped) * 8, 1000) # ~8px per char average
lines.append({
"bbox": [0, y_offset, estimated_width, y_offset + line_height],
"text": stripped,
"conf": 0.95,
})
y_offset += line_height
return lines
api_key_header = APIKeyHeader(name=API_KEY_HEADER_NAME, auto_error=False)
_rate_limit_lock = asyncio.Lock()
_request_log: DefaultDict[str, Deque[float]] = defaultdict(deque)
def ensure_upload_is_safe(file: UploadFile) -> None:
# Check content type from header
content_type = (file.content_type or "").lower()
# Also check file extension as fallback (browsers sometimes send application/octet-stream)
filename = (file.filename or "").lower()
extension = filename.split('.')[-1] if '.' in filename else ""
allowed_extensions = {'jpg', 'jpeg', 'png', 'webp'}
# Allow if content type matches OR extension matches
content_type_valid = content_type in ALLOWED_CONTENT_TYPES
extension_valid = extension in allowed_extensions
if not content_type_valid and not extension_valid:
raise HTTPException(
status_code=status.HTTP_415_UNSUPPORTED_MEDIA_TYPE,
detail=f"Unsupported file type. Content-Type: {content_type}, Extension: {extension}. Allowed: {', '.join(ALLOWED_CONTENT_TYPES)}",
)
file.file.seek(0, os.SEEK_END)
size = file.file.tell()
file.file.seek(0)
if size > MAX_UPLOAD_BYTES:
raise HTTPException(
status_code=status.HTTP_413_REQUEST_ENTITY_TOO_LARGE,
detail="Uploaded file exceeds size limit",
)
async def verify_api_key(api_key: Optional[str] = Depends(api_key_header)) -> str:
# Skip API key verification in development mode
if not REQUIRE_API_KEY:
return api_key or SERVICE_API_KEY
# Enforce API key in production
if not api_key or not secrets.compare_digest(api_key, SERVICE_API_KEY):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
)
return api_key
async def enforce_rate_limit(
request: Request, api_key: str = Depends(verify_api_key)
) -> None:
if RATE_LIMIT_REQUESTS <= 0:
return
identifier = api_key or (request.client.host if request.client else "anonymous")
now = monotonic()
async with _rate_limit_lock:
window = _request_log[identifier]
while window and now - window[0] > RATE_LIMIT_WINDOW_SECONDS:
window.popleft()
if len(window) >= RATE_LIMIT_REQUESTS:
raise HTTPException(
status_code=status.HTTP_429_TOO_MANY_REQUESTS,
detail="Rate limit exceeded",
)
window.append(now)
def _decode_image(file: UploadFile) -> Image.Image:
"""Decode uploaded image file to PIL Image"""
data = file.file.read()
if not data:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Uploaded file is empty",
)
# Save to temp file for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
tmp_file.write(data)
tmp_path = tmp_file.name
try:
img = Image.open(tmp_path).convert("RGB")
return img, tmp_path
except Exception as e:
os.unlink(tmp_path)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Unable to decode image: {str(e)}",
)
async def load_img(file: UploadFile):
ensure_upload_is_safe(file)
file.file.seek(0)
img, img_path = _decode_image(file)
return img, img_path
def _parse_json_field(name: str, raw: str, expected_type: type) -> Any:
try:
value = json.loads(raw)
except json.JSONDecodeError as exc:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Invalid {name} payload",
) from exc
if not isinstance(value, expected_type):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} must be a {expected_type.__name__}",
)
return value
def _validate_safe_json(value: Any, name: str, depth: int = 0) -> None:
if depth > MAX_JSON_DEPTH:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} is too deeply nested",
)
if isinstance(value, dict):
if len(value) > MAX_JSON_DICT_KEYS:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} has too many keys",
)
for key, item in value.items():
if not isinstance(key, str) or len(key) > 64:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains an invalid key",
)
_validate_safe_json(item, f"{name}.{key}", depth + 1)
return
if isinstance(value, list):
if len(value) > MAX_JSON_LIST_ITEMS:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} has too many entries",
)
for idx, item in enumerate(value):
_validate_safe_json(item, f"{name}[{idx}]", depth + 1)
return
if isinstance(value, str):
if len(value) > MAX_JSON_STRING_LENGTH:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains an oversized string",
)
if any(ord(ch) < 32 and ch not in (9, 10, 13) for ch in value):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains control characters",
)
return
if isinstance(value, bool) or value is None:
return
if isinstance(value, (int, float)):
if isinstance(value, float) and not math.isfinite(value):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} must contain finite numbers",
)
return
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains an unsupported value type",
)
def _sanitize_label(name: str, value: str) -> str:
if not isinstance(value, str):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} must be a string",
)
trimmed = value.strip()
if not trimmed:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} cannot be empty",
)
if len(trimmed) > 128:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} is too long",
)
if any(ord(ch) < 32 for ch in trimmed):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"{name} contains invalid characters",
)
return trimmed
def _parse_parent_bbox(raw: str, width: int, height: int) -> list[float]:
values = _parse_json_field("parent_bbox", raw, list)
if len(values) != 4:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox must have four values",
)
coords: list[float] = []
for value in values:
try:
coord = float(value)
except (TypeError, ValueError) as exc:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox must contain numeric values",
) from exc
if not math.isfinite(coord):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox must contain finite coordinates",
)
coords.append(coord)
x1, y1, x2, y2 = coords
if x2 <= x1 or y2 <= y1:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox coordinates are invalid",
)
if x1 < 0 or y1 < 0 or x2 > width or y2 > height:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="parent_bbox is outside the image bounds",
)
return coords
def _parse_settings(raw: str) -> dict:
settings = _parse_json_field("settings", raw, dict)
if len(settings) > 50:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="settings payload is too large",
)
_validate_safe_json(settings, "settings")
return settings
def _parse_rules(raw: str) -> list:
rules = _parse_json_field("rules", raw, list)
if len(rules) > 100:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="rules payload is too large",
)
for idx, rule in enumerate(rules):
if not isinstance(rule, dict):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="rules entries must be objects",
)
_validate_safe_json(rule, f"rules[{idx}]")
return rules
@app.post("/ocr")
async def ocr_page(
file: UploadFile,
_: None = Depends(enforce_rate_limit),
):
"""OCR endpoint using DeepSeek-OCR"""
img, img_path = await load_img(file)
try:
# Save PIL image to temporary file for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
img.save(tmp_file, 'JPEG', quality=95)
tmp_img_path = tmp_file.name
try:
# Use grounding prompt for better structure extraction
result = await run_deepseek_ocr(
tmp_img_path,
prompt="<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
use_grounding=True
)
return result
except Exception as e:
# Log the error but don't crash - return a helpful error message
error_msg = str(e)
print(f"OCR processing error: {error_msg}")
# Check if it's a model loading issue
if "matplotlib" in error_msg or "torchvision" in error_msg or "ImportError" in error_msg:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail=f"OCR model dependencies missing: {error_msg}. Please install required packages."
)
elif "Connection" in error_msg or "timeout" in error_msg.lower():
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail=f"OCR service temporarily unavailable: {error_msg}"
)
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"OCR processing failed: {error_msg}"
)
finally:
if os.path.exists(tmp_img_path):
os.unlink(tmp_img_path)
finally:
if os.path.exists(img_path):
os.unlink(img_path)
@app.post("/split")
async def split(
file: UploadFile,
parent_bbox: str = Form(...),
splitter: str = Form(...),
schemaType: str = Form(...),
settings: str = Form("{}"),
rules: str = Form("[]"),
_: None = Depends(enforce_rate_limit),
):
"""Split endpoint - uses DeepSeek-OCR for region extraction"""
img, img_path = await load_img(file)
try:
width, height = img.size
# Save image for DeepSeek-OCR
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
img.save(tmp_file, 'JPEG', quality=95)
tmp_img_path = tmp_file.name
try:
parent_box = _parse_parent_bbox(parent_bbox, width, height)
x1, y1, x2, y2 = parent_box
# Crop image to parent bbox
crop_img = img.crop((int(x1), int(y1), int(x2), int(y2)))
crop_path = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg').name
crop_img.save(crop_path, 'JPEG', quality=95)
try:
# Use DeepSeek-OCR with grounding prompt for better structured extraction
prompt = "<image>\n<|grounding|>Convert the document region to markdown with preserved layout."
ocr_result = await run_deepseek_ocr(crop_path, prompt=prompt, use_grounding=True)
# Parse OCR result to extract lines
child_lines = ocr_result.get("lines", [])
# Adjust bboxes to parent coordinate space
for line in child_lines:
bbox = line["bbox"]
line["bbox"] = [
bbox[0] + x1,
bbox[1] + y1,
bbox[2] + x1,
bbox[3] + y1,
]
line["blockType"] = "text"
if len(child_lines) > MAX_CHILD_LINES:
child_lines = child_lines[:MAX_CHILD_LINES]
sanitized_splitter = _sanitize_label("splitter", splitter)
sanitized_schema = _sanitize_label("schemaType", schemaType)
parsed_settings = _parse_settings(settings)
parsed_rules = _parse_rules(rules)
raw_text = "\n".join([l["text"] for l in child_lines])
text_truncated = False
if len(raw_text) > 5000:
raw_text = raw_text[:5000]
text_truncated = True
llm_input = {
"schemaType": sanitized_schema,
"splitter": sanitized_splitter,
"page": {"width": width, "height": height},
"parentBox": parent_box,
"rawText": raw_text,
"ocrLines": child_lines,
"rawTextTruncated": text_truncated,
"ocrLinesTruncated": len(child_lines) >= MAX_CHILD_LINES,
"settings": parsed_settings,
"rules": parsed_rules,
}
try:
llm_result = await call_llm_splitter(llm_input)
except ValueError as exc:
raise HTTPException(
status_code=status.HTTP_502_BAD_GATEWAY,
detail=str(exc),
) from exc
return llm_result
finally:
if os.path.exists(crop_path):
os.unlink(crop_path)
finally:
if os.path.exists(tmp_img_path):
os.unlink(tmp_img_path)
finally:
if os.path.exists(img_path):
os.unlink(img_path)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8080)