Spaces:
Sleeping
Sleeping
Upload ocr_service.py
Browse files- ocr_service.py +96 -552
ocr_service.py
CHANGED
|
@@ -2,59 +2,19 @@ import asyncio
|
|
| 2 |
import json
|
| 3 |
import math
|
| 4 |
import os
|
| 5 |
-
import platform
|
| 6 |
import secrets
|
| 7 |
-
import tempfile
|
| 8 |
from collections import defaultdict, deque
|
| 9 |
from time import monotonic
|
| 10 |
-
from typing import Any, Deque, DefaultDict
|
| 11 |
-
from pathlib import Path
|
| 12 |
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
from fastapi import Depends, FastAPI, Form, HTTPException, Request, UploadFile, status
|
| 15 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
from fastapi.security import APIKeyHeader
|
| 17 |
-
from
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
_torch = None
|
| 21 |
-
_transformers = None
|
| 22 |
-
|
| 23 |
-
def _get_torch():
|
| 24 |
-
global _torch
|
| 25 |
-
if _torch is None:
|
| 26 |
-
try:
|
| 27 |
-
import torch
|
| 28 |
-
_torch = torch
|
| 29 |
-
except ImportError:
|
| 30 |
-
raise RuntimeError(
|
| 31 |
-
"torch is not installed. Install with: pip install torch"
|
| 32 |
-
)
|
| 33 |
-
return _torch
|
| 34 |
-
|
| 35 |
-
def _get_transformers():
|
| 36 |
-
global _transformers
|
| 37 |
-
if _transformers is None:
|
| 38 |
-
try:
|
| 39 |
-
from transformers import AutoModel, AutoTokenizer
|
| 40 |
-
_transformers = (AutoModel, AutoTokenizer)
|
| 41 |
-
except ImportError:
|
| 42 |
-
raise RuntimeError(
|
| 43 |
-
"transformers is not installed. Install with: pip install transformers"
|
| 44 |
-
)
|
| 45 |
-
return _transformers
|
| 46 |
-
|
| 47 |
-
# Import llm_splitter (works as module or direct import)
|
| 48 |
-
try:
|
| 49 |
-
from llm_splitter import call_llm_splitter
|
| 50 |
-
except ImportError:
|
| 51 |
-
# Fallback for relative import
|
| 52 |
-
try:
|
| 53 |
-
from .llm_splitter import call_llm_splitter
|
| 54 |
-
except ImportError:
|
| 55 |
-
# If llm_splitter doesn't exist, define a stub
|
| 56 |
-
async def call_llm_splitter(*args, **kwargs):
|
| 57 |
-
raise NotImplementedError("llm_splitter not available")
|
| 58 |
|
| 59 |
ALLOWED_CONTENT_TYPES = {
|
| 60 |
"image/jpeg",
|
|
@@ -64,9 +24,11 @@ ALLOWED_CONTENT_TYPES = {
|
|
| 64 |
MAX_UPLOAD_BYTES = int(os.getenv("MAX_UPLOAD_BYTES", str(5 * 1024 * 1024)))
|
| 65 |
RATE_LIMIT_REQUESTS = int(os.getenv("RATE_LIMIT_REQUESTS", "30"))
|
| 66 |
RATE_LIMIT_WINDOW_SECONDS = float(os.getenv("RATE_LIMIT_WINDOW_SECONDS", "60"))
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
API_KEY_HEADER_NAME = "X-API-Key"
|
| 71 |
MAX_CHILD_LINES = 500
|
| 72 |
MAX_JSON_DEPTH = 4
|
|
@@ -74,340 +36,9 @@ MAX_JSON_STRING_LENGTH = 512
|
|
| 74 |
MAX_JSON_DICT_KEYS = 50
|
| 75 |
MAX_JSON_LIST_ITEMS = 100
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Use a commit hash from https://huggingface.co/deepseek-ai/DeepSeek-OCR/tree/main
|
| 81 |
-
# This prevents "A new version of ... was downloaded" warnings and keeps code stable
|
| 82 |
-
MODEL_REVISION = os.getenv("DEEPSEEK_MODEL_REVISION", "2c968b433af61a059311cbf8997765023806a24d") # Latest stable commit
|
| 83 |
-
|
| 84 |
-
# Detect Apple Silicon (M1/M2/M3/M4) - use MPS if available, otherwise CPU
|
| 85 |
-
IS_APPLE_SILICON = platform.machine() == "arm64"
|
| 86 |
-
USE_GPU = os.getenv("USE_GPU", "true").lower() == "true" and not IS_APPLE_SILICON # M4 uses MPS, not CUDA
|
| 87 |
-
USE_MPS = IS_APPLE_SILICON # Use Metal Performance Shaders on Apple Silicon
|
| 88 |
-
# Maximum quality settings (larger = better, slower = more accurate)
|
| 89 |
-
BASE_SIZE = int(os.getenv("DEEPSEEK_BASE_SIZE", "1280")) # Maximum quality: 1280 (not light!)
|
| 90 |
-
IMAGE_SIZE = int(os.getenv("DEEPSEEK_IMAGE_SIZE", "1280")) # Maximum quality: 1280 (not light!)
|
| 91 |
-
CROP_MODE = os.getenv("DEEPSEEK_CROP_MODE", "true").lower() == "true" # True for best accuracy
|
| 92 |
-
|
| 93 |
-
app = FastAPI(
|
| 94 |
-
title="DeepSeek-OCR API",
|
| 95 |
-
description="OCR Service using DeepSeek-OCR for maximum quality text extraction",
|
| 96 |
-
version="1.0.0"
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
# Add root endpoint for health check
|
| 100 |
-
@app.get("/")
|
| 101 |
-
async def root(__sign: Optional[str] = None):
|
| 102 |
-
"""
|
| 103 |
-
Root endpoint - compatible with HuggingFace Spaces authentication.
|
| 104 |
-
The __sign parameter is used by HuggingFace's proxy but can be ignored.
|
| 105 |
-
"""
|
| 106 |
-
return {
|
| 107 |
-
"service": "DeepSeek-OCR API",
|
| 108 |
-
"status": "running",
|
| 109 |
-
"version": "1.0.0",
|
| 110 |
-
"endpoints": {
|
| 111 |
-
"docs": "/docs",
|
| 112 |
-
"ocr": "/ocr",
|
| 113 |
-
"split": "/split"
|
| 114 |
-
}
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
# Add CORS middleware to allow frontend requests
|
| 118 |
-
# Configured for HuggingFace Spaces which requires explicit CORS handling
|
| 119 |
-
app.add_middleware(
|
| 120 |
-
CORSMiddleware,
|
| 121 |
-
allow_origins=["*"], # In production, replace with specific origins
|
| 122 |
-
allow_credentials=True,
|
| 123 |
-
allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"],
|
| 124 |
-
allow_headers=["*"],
|
| 125 |
-
expose_headers=["*"],
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
# Initialize DeepSeek-OCR model
|
| 129 |
-
_ocr_model = None
|
| 130 |
-
_ocr_tokenizer = None
|
| 131 |
-
_model_lock = asyncio.Lock()
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
def _download_and_patch_model_locally(model_id: str, revision: str) -> str:
|
| 135 |
-
"""
|
| 136 |
-
Download DeepSeek-OCR to a local dir, patch out hardcoded .cuda() in infer(),
|
| 137 |
-
and return the local path for from_pretrained(...).
|
| 138 |
-
|
| 139 |
-
This ensures we control the exact file that gets imported (patched version).
|
| 140 |
-
|
| 141 |
-
Per official HuggingFace discussion: https://huggingface.co/deepseek-ai/DeepSeek-OCR/discussions/21
|
| 142 |
-
"""
|
| 143 |
-
from pathlib import Path
|
| 144 |
-
import re
|
| 145 |
-
|
| 146 |
-
try:
|
| 147 |
-
from huggingface_hub import snapshot_download
|
| 148 |
-
except ImportError:
|
| 149 |
-
raise RuntimeError("huggingface_hub is required. Install with: pip install huggingface_hub")
|
| 150 |
-
|
| 151 |
-
print(f" 📥 Downloading model (revision {revision[:8]})...")
|
| 152 |
-
local_dir = snapshot_download(model_id, revision=revision)
|
| 153 |
-
print(f" ✅ Downloaded to: {local_dir}")
|
| 154 |
-
|
| 155 |
-
# Find modeling_deepseekocr.py (may be in subdirectories with trust_remote_code)
|
| 156 |
-
target = Path(local_dir) / "modeling_deepseekocr.py"
|
| 157 |
-
if not target.exists():
|
| 158 |
-
# trust_remote_code sometimes stores under modules; fall back to a glob
|
| 159 |
-
hits = list(Path(local_dir).rglob("modeling_deepseekocr.py"))
|
| 160 |
-
target = hits[0] if hits else None
|
| 161 |
-
|
| 162 |
-
if not target or not target.exists():
|
| 163 |
-
raise RuntimeError("Could not locate modeling_deepseekocr.py to patch")
|
| 164 |
-
|
| 165 |
-
print(f" 🔍 Found model file: {target}")
|
| 166 |
-
|
| 167 |
-
# Read file
|
| 168 |
-
src = target.read_text(encoding='utf-8')
|
| 169 |
-
|
| 170 |
-
# Check if already patched
|
| 171 |
-
if ".unsqueeze(-1).cuda()" not in src and "input_ids.unsqueeze(0).cuda()" not in src:
|
| 172 |
-
print(f" ✅ Model already patched for CPU")
|
| 173 |
-
return local_dir
|
| 174 |
-
|
| 175 |
-
# CPU patches from the HF discussion (remove hardcoded .cuda() in infer)
|
| 176 |
-
# https://huggingface.co/deepseek-ai/DeepSeek-OCR/discussions/21
|
| 177 |
-
repl = [
|
| 178 |
-
(r"\.unsqueeze\(-1\)\.cuda\(\)", ".unsqueeze(-1)"),
|
| 179 |
-
(r"input_ids\.unsqueeze\(0\)\.cuda\(\)", "input_ids.unsqueeze(0)"),
|
| 180 |
-
(r"\(images_crop\.cuda\(\), images_ori\.cuda\(\)\)", "(images_crop, images_ori)"),
|
| 181 |
-
(r"images_seq_mask = images_seq_mask\.unsqueeze\(0\)\.cuda\(\)",
|
| 182 |
-
"images_seq_mask = images_seq_mask.unsqueeze(0)"),
|
| 183 |
-
(r"input_ids\.unsqueeze\(0\)\.cuda\(\)\.shape\[1\]",
|
| 184 |
-
"input_ids.unsqueeze(0).shape[1]"),
|
| 185 |
-
]
|
| 186 |
-
|
| 187 |
-
original_src = src
|
| 188 |
-
for pat, rep in repl:
|
| 189 |
-
src = re.sub(pat, rep, src)
|
| 190 |
-
|
| 191 |
-
# Write patched file
|
| 192 |
-
if src != original_src:
|
| 193 |
-
target.write_text(src, encoding='utf-8')
|
| 194 |
-
print(f" ✅ Patched for CPU: {target}")
|
| 195 |
-
else:
|
| 196 |
-
print(f" ⚠️ No .cuda() calls found to patch")
|
| 197 |
-
|
| 198 |
-
return local_dir
|
| 199 |
-
|
| 200 |
-
async def get_ocr_model():
|
| 201 |
-
"""Lazy load DeepSeek-OCR model with compatibility patching"""
|
| 202 |
-
global _ocr_model, _ocr_tokenizer
|
| 203 |
-
if _ocr_model is None or _ocr_tokenizer is None:
|
| 204 |
-
async with _model_lock:
|
| 205 |
-
if _ocr_model is None or _ocr_tokenizer is None:
|
| 206 |
-
# Lazy import dependencies
|
| 207 |
-
# Note: Patching no longer needed - we pin transformers==4.46.3 and model revision
|
| 208 |
-
AutoModel, AutoTokenizer = _get_transformers()
|
| 209 |
-
torch = _get_torch()
|
| 210 |
-
|
| 211 |
-
print(f"Loading DeepSeek-OCR model (MAXIMUM QUALITY): {MODEL_NAME}")
|
| 212 |
-
print(f" - Base size: {BASE_SIZE}")
|
| 213 |
-
print(f" - Image size: {IMAGE_SIZE}")
|
| 214 |
-
print(f" - Crop mode: {CROP_MODE}")
|
| 215 |
-
|
| 216 |
-
# 1) Download & patch; 2) Load from local dir so our patch is used
|
| 217 |
-
local_dir = _download_and_patch_model_locally(MODEL_NAME, MODEL_REVISION)
|
| 218 |
-
|
| 219 |
-
print(" - Loading tokenizer (local, pinned revision)...")
|
| 220 |
-
_ocr_tokenizer = AutoTokenizer.from_pretrained(
|
| 221 |
-
local_dir,
|
| 222 |
-
trust_remote_code=True,
|
| 223 |
-
local_files_only=True # Load from local patched directory
|
| 224 |
-
)
|
| 225 |
-
print(" - Tokenizer loaded successfully")
|
| 226 |
-
|
| 227 |
-
# Load model with compatibility settings
|
| 228 |
-
# Official DeepSeek-OCR usage: https://huggingface.co/deepseek-ai/DeepSeek-OCR
|
| 229 |
-
# GPU version uses: attn_implementation='flash_attention_2', use_safetensors=True
|
| 230 |
-
# CPU/Spaces version MUST use: attn_implementation='eager' (SDPA not implemented for this arch)
|
| 231 |
-
# Fix per: https://github.com/huggingface/transformers/issues/28005
|
| 232 |
-
load_kwargs = {
|
| 233 |
-
"trust_remote_code": True,
|
| 234 |
-
"use_safetensors": True,
|
| 235 |
-
"attn_implementation": "eager", # SDPA not implemented for this arch
|
| 236 |
-
}
|
| 237 |
-
|
| 238 |
-
# If CUDA exists you can still cast later; but keep eager attention
|
| 239 |
-
_ocr_model = AutoModel.from_pretrained(
|
| 240 |
-
local_dir,
|
| 241 |
-
local_files_only=True, # Load from local patched directory
|
| 242 |
-
**load_kwargs
|
| 243 |
-
).eval()
|
| 244 |
-
|
| 245 |
-
# Handle device placement (per official DeepSeek-OCR usage)
|
| 246 |
-
if USE_MPS and torch.backends.mps.is_available():
|
| 247 |
-
# Apple Silicon: MPS (Metal Performance Shaders)
|
| 248 |
-
_ocr_model = _ocr_model.to("mps")
|
| 249 |
-
print(" - DeepSeek-OCR loaded on Apple Silicon GPU (MPS/M4)")
|
| 250 |
-
elif USE_GPU and torch.cuda.is_available():
|
| 251 |
-
# NVIDIA GPU: CUDA with bfloat16 (per official usage)
|
| 252 |
-
_ocr_model = _ocr_model.cuda().to(torch.bfloat16)
|
| 253 |
-
print(" - DeepSeek-OCR loaded on NVIDIA GPU (CUDA + bfloat16)")
|
| 254 |
-
else:
|
| 255 |
-
# CPU: No device placement needed
|
| 256 |
-
print(" - DeepSeek-OCR loaded on CPU")
|
| 257 |
-
return _ocr_model, _ocr_tokenizer
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
async def run_deepseek_ocr(
|
| 261 |
-
image_path: str,
|
| 262 |
-
prompt: str = "<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
|
| 263 |
-
use_grounding: bool = True
|
| 264 |
-
) -> dict:
|
| 265 |
-
"""
|
| 266 |
-
Run DeepSeek-OCR on an image file with advanced grounding support.
|
| 267 |
-
|
| 268 |
-
Genius enhancement: Uses grounding prompts for better structure extraction
|
| 269 |
-
and layout preservation, following DeepSeek-OCR best practices.
|
| 270 |
-
"""
|
| 271 |
-
model, tokenizer = await get_ocr_model()
|
| 272 |
-
|
| 273 |
-
output_path = tempfile.mkdtemp()
|
| 274 |
-
|
| 275 |
-
try:
|
| 276 |
-
# OCR quality settings
|
| 277 |
-
# Official DeepSeek-OCR quality presets (from https://huggingface.co/deepseek-ai/DeepSeek-OCR):
|
| 278 |
-
# - Tiny: base_size=512, image_size=512, crop_mode=False
|
| 279 |
-
# - Small: base_size=640, image_size=640, crop_mode=False
|
| 280 |
-
# - Base: base_size=1024, image_size=1024, crop_mode=False
|
| 281 |
-
# - Large: base_size=1280, image_size=1280, crop_mode=False (GPU only)
|
| 282 |
-
# - Gundam: base_size=1024, image_size=640, crop_mode=True (recommended for CPU/ZeroGPU)
|
| 283 |
-
#
|
| 284 |
-
# Note: On CPU/Spaces, use lower quality to avoid slowdowns/OOM
|
| 285 |
-
# We adjust based on device availability
|
| 286 |
-
# Get torch to check for GPU availability
|
| 287 |
-
torch = _get_torch()
|
| 288 |
-
if USE_GPU and torch.cuda.is_available():
|
| 289 |
-
# GPU: Use maximum quality (Large preset)
|
| 290 |
-
actual_base_size = BASE_SIZE # 1280
|
| 291 |
-
actual_image_size = IMAGE_SIZE # 1280
|
| 292 |
-
else:
|
| 293 |
-
# CPU/Spaces: Use Gundam preset (recommended for CPU to avoid OOM)
|
| 294 |
-
actual_base_size = 1024
|
| 295 |
-
actual_image_size = 640
|
| 296 |
-
print(f" - Using CPU-optimized quality: base_size={actual_base_size}, image_size={actual_image_size}")
|
| 297 |
-
|
| 298 |
-
result = model.infer(
|
| 299 |
-
tokenizer,
|
| 300 |
-
prompt=prompt,
|
| 301 |
-
image_file=image_path,
|
| 302 |
-
output_path=output_path,
|
| 303 |
-
base_size=actual_base_size,
|
| 304 |
-
image_size=actual_image_size,
|
| 305 |
-
crop_mode=CROP_MODE, # True = best accuracy for complex documents
|
| 306 |
-
save_results=False, # Don't save intermediate files
|
| 307 |
-
test_compress=False, # False = maximum quality, no compression
|
| 308 |
-
)
|
| 309 |
-
|
| 310 |
-
# Parse result - DeepSeek-OCR returns structured markdown output
|
| 311 |
-
ocr_text = result if isinstance(result, str) else str(result)
|
| 312 |
-
|
| 313 |
-
# Genius parsing: Extract structured lines from markdown with better layout awareness
|
| 314 |
-
lines = _parse_deepseek_output(ocr_text)
|
| 315 |
-
|
| 316 |
-
return {
|
| 317 |
-
"text": ocr_text,
|
| 318 |
-
"lines": lines,
|
| 319 |
-
}
|
| 320 |
-
except Exception as e:
|
| 321 |
-
print(f"DeepSeek-OCR error: {e}")
|
| 322 |
-
import traceback
|
| 323 |
-
traceback.print_exc()
|
| 324 |
-
raise HTTPException(
|
| 325 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 326 |
-
detail=f"OCR processing failed: {str(e)}",
|
| 327 |
-
)
|
| 328 |
-
finally:
|
| 329 |
-
# Cleanup temp directory
|
| 330 |
-
try:
|
| 331 |
-
import shutil
|
| 332 |
-
if os.path.exists(output_path):
|
| 333 |
-
shutil.rmtree(output_path)
|
| 334 |
-
except:
|
| 335 |
-
pass
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
def _parse_deepseek_output(ocr_text: str) -> list:
|
| 339 |
-
"""
|
| 340 |
-
Genius parser: Extract structured lines from DeepSeek-OCR markdown output.
|
| 341 |
-
Preserves layout, handles tables, lists, and structured content.
|
| 342 |
-
"""
|
| 343 |
-
lines = []
|
| 344 |
-
text_lines = ocr_text.split('\n')
|
| 345 |
-
|
| 346 |
-
y_offset = 0
|
| 347 |
-
line_height = 24 # Estimated line height in pixels
|
| 348 |
-
|
| 349 |
-
for line_idx, line in enumerate(text_lines):
|
| 350 |
-
stripped = line.strip()
|
| 351 |
-
if not stripped:
|
| 352 |
-
# Empty lines still take space
|
| 353 |
-
y_offset += line_height // 2
|
| 354 |
-
continue
|
| 355 |
-
|
| 356 |
-
# Remove markdown formatting but preserve text structure
|
| 357 |
-
# Handle markdown tables (| separated)
|
| 358 |
-
if '|' in stripped and stripped.count('|') >= 2:
|
| 359 |
-
# Table row - split by | and process each cell
|
| 360 |
-
cells = [cell.strip() for cell in stripped.split('|') if cell.strip()]
|
| 361 |
-
for cell_idx, cell in enumerate(cells):
|
| 362 |
-
if cell:
|
| 363 |
-
lines.append({
|
| 364 |
-
"bbox": [
|
| 365 |
-
cell_idx * 200, # Approximate x position
|
| 366 |
-
y_offset,
|
| 367 |
-
(cell_idx + 1) * 200,
|
| 368 |
-
y_offset + line_height
|
| 369 |
-
],
|
| 370 |
-
"text": cell,
|
| 371 |
-
"conf": 0.95,
|
| 372 |
-
})
|
| 373 |
-
y_offset += line_height
|
| 374 |
-
# Handle markdown lists (-, *, 1., etc.)
|
| 375 |
-
elif stripped.startswith(('-', '*', '+')) or (len(stripped) > 2 and stripped[1] == '.'):
|
| 376 |
-
# List item - remove list marker
|
| 377 |
-
text = stripped.lstrip('-*+').lstrip('0123456789.').strip()
|
| 378 |
-
if text:
|
| 379 |
-
lines.append({
|
| 380 |
-
"bbox": [40, y_offset, 1000, y_offset + line_height],
|
| 381 |
-
"text": text,
|
| 382 |
-
"conf": 0.95,
|
| 383 |
-
})
|
| 384 |
-
y_offset += line_height
|
| 385 |
-
# Handle headers (# ## ###)
|
| 386 |
-
elif stripped.startswith('#'):
|
| 387 |
-
header_level = len(stripped) - len(stripped.lstrip('#'))
|
| 388 |
-
text = stripped.lstrip('#').strip()
|
| 389 |
-
if text:
|
| 390 |
-
# Headers are typically larger
|
| 391 |
-
header_height = line_height + (header_level * 4)
|
| 392 |
-
lines.append({
|
| 393 |
-
"bbox": [0, y_offset, 1000, y_offset + header_height],
|
| 394 |
-
"text": text,
|
| 395 |
-
"conf": 0.95,
|
| 396 |
-
})
|
| 397 |
-
y_offset += header_height
|
| 398 |
-
# Regular text line
|
| 399 |
-
else:
|
| 400 |
-
# Estimate width based on text length (rough approximation)
|
| 401 |
-
estimated_width = min(len(stripped) * 8, 1000) # ~8px per char average
|
| 402 |
-
lines.append({
|
| 403 |
-
"bbox": [0, y_offset, estimated_width, y_offset + line_height],
|
| 404 |
-
"text": stripped,
|
| 405 |
-
"conf": 0.95,
|
| 406 |
-
})
|
| 407 |
-
y_offset += line_height
|
| 408 |
-
|
| 409 |
-
return lines
|
| 410 |
-
|
| 411 |
|
| 412 |
api_key_header = APIKeyHeader(name=API_KEY_HEADER_NAME, auto_error=False)
|
| 413 |
_rate_limit_lock = asyncio.Lock()
|
|
@@ -415,22 +46,11 @@ _request_log: DefaultDict[str, Deque[float]] = defaultdict(deque)
|
|
| 415 |
|
| 416 |
|
| 417 |
def ensure_upload_is_safe(file: UploadFile) -> None:
|
| 418 |
-
# Check content type from header
|
| 419 |
content_type = (file.content_type or "").lower()
|
| 420 |
-
|
| 421 |
-
# Also check file extension as fallback (browsers sometimes send application/octet-stream)
|
| 422 |
-
filename = (file.filename or "").lower()
|
| 423 |
-
extension = filename.split('.')[-1] if '.' in filename else ""
|
| 424 |
-
allowed_extensions = {'jpg', 'jpeg', 'png', 'webp'}
|
| 425 |
-
|
| 426 |
-
# Allow if content type matches OR extension matches
|
| 427 |
-
content_type_valid = content_type in ALLOWED_CONTENT_TYPES
|
| 428 |
-
extension_valid = extension in allowed_extensions
|
| 429 |
-
|
| 430 |
-
if not content_type_valid and not extension_valid:
|
| 431 |
raise HTTPException(
|
| 432 |
status_code=status.HTTP_415_UNSUPPORTED_MEDIA_TYPE,
|
| 433 |
-
detail=
|
| 434 |
)
|
| 435 |
|
| 436 |
file.file.seek(0, os.SEEK_END)
|
|
@@ -443,11 +63,7 @@ def ensure_upload_is_safe(file: UploadFile) -> None:
|
|
| 443 |
)
|
| 444 |
|
| 445 |
|
| 446 |
-
async def verify_api_key(api_key:
|
| 447 |
-
# Skip API key verification in development mode
|
| 448 |
-
if not REQUIRE_API_KEY:
|
| 449 |
-
return api_key or SERVICE_API_KEY
|
| 450 |
-
# Enforce API key in production
|
| 451 |
if not api_key or not secrets.compare_digest(api_key, SERVICE_API_KEY):
|
| 452 |
raise HTTPException(
|
| 453 |
status_code=status.HTTP_401_UNAUTHORIZED,
|
|
@@ -475,36 +91,26 @@ async def enforce_rate_limit(
|
|
| 475 |
window.append(now)
|
| 476 |
|
| 477 |
|
| 478 |
-
def _decode_image(file: UploadFile)
|
| 479 |
-
"""Decode uploaded image file to PIL Image"""
|
| 480 |
data = file.file.read()
|
| 481 |
if not data:
|
| 482 |
raise HTTPException(
|
| 483 |
status_code=status.HTTP_400_BAD_REQUEST,
|
| 484 |
detail="Uploaded file is empty",
|
| 485 |
)
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as tmp_file:
|
| 489 |
-
tmp_file.write(data)
|
| 490 |
-
tmp_path = tmp_file.name
|
| 491 |
-
|
| 492 |
-
try:
|
| 493 |
-
img = Image.open(tmp_path).convert("RGB")
|
| 494 |
-
return img, tmp_path
|
| 495 |
-
except Exception as e:
|
| 496 |
-
os.unlink(tmp_path)
|
| 497 |
raise HTTPException(
|
| 498 |
status_code=status.HTTP_400_BAD_REQUEST,
|
| 499 |
-
detail=
|
| 500 |
)
|
|
|
|
| 501 |
|
| 502 |
|
| 503 |
-
|
| 504 |
ensure_upload_is_safe(file)
|
| 505 |
file.file.seek(0)
|
| 506 |
-
|
| 507 |
-
return img, img_path
|
| 508 |
|
| 509 |
|
| 510 |
def _parse_json_field(name: str, raw: str, expected_type: type) -> Any:
|
|
@@ -668,65 +274,20 @@ def _parse_rules(raw: str) -> list:
|
|
| 668 |
return rules
|
| 669 |
|
| 670 |
|
| 671 |
-
@app.options("/ocr")
|
| 672 |
-
async def ocr_options():
|
| 673 |
-
"""Handle CORS preflight requests (required by HuggingFace Spaces)"""
|
| 674 |
-
return {"message": "OK"}
|
| 675 |
-
|
| 676 |
-
@app.options("/api/predict")
|
| 677 |
-
async def predict_options():
|
| 678 |
-
"""Handle CORS preflight for HuggingFace Spaces auto-routing"""
|
| 679 |
-
return {"message": "OK"}
|
| 680 |
-
|
| 681 |
@app.post("/ocr")
|
| 682 |
-
@app.post("/api/predict") # HuggingFace Spaces may auto-route POST requests here
|
| 683 |
async def ocr_page(
|
| 684 |
file: UploadFile,
|
| 685 |
_: None = Depends(enforce_rate_limit),
|
| 686 |
):
|
| 687 |
-
|
| 688 |
-
img,
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
# Use grounding prompt for better structure extraction
|
| 697 |
-
result = await run_deepseek_ocr(
|
| 698 |
-
tmp_img_path,
|
| 699 |
-
prompt="<image>\n<|grounding|>Convert the document to markdown with preserved layout.",
|
| 700 |
-
use_grounding=True
|
| 701 |
-
)
|
| 702 |
-
return result
|
| 703 |
-
except Exception as e:
|
| 704 |
-
# Log the error but don't crash - return a helpful error message
|
| 705 |
-
error_msg = str(e)
|
| 706 |
-
print(f"OCR processing error: {error_msg}")
|
| 707 |
-
|
| 708 |
-
# Check if it's a model loading issue
|
| 709 |
-
if "matplotlib" in error_msg or "torchvision" in error_msg or "ImportError" in error_msg:
|
| 710 |
-
raise HTTPException(
|
| 711 |
-
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
| 712 |
-
detail=f"OCR model dependencies missing: {error_msg}. Please install required packages."
|
| 713 |
-
)
|
| 714 |
-
elif "Connection" in error_msg or "timeout" in error_msg.lower():
|
| 715 |
-
raise HTTPException(
|
| 716 |
-
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
| 717 |
-
detail=f"OCR service temporarily unavailable: {error_msg}"
|
| 718 |
-
)
|
| 719 |
-
else:
|
| 720 |
-
raise HTTPException(
|
| 721 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 722 |
-
detail=f"OCR processing failed: {error_msg}"
|
| 723 |
-
)
|
| 724 |
-
finally:
|
| 725 |
-
if os.path.exists(tmp_img_path):
|
| 726 |
-
os.unlink(tmp_img_path)
|
| 727 |
-
finally:
|
| 728 |
-
if os.path.exists(img_path):
|
| 729 |
-
os.unlink(img_path)
|
| 730 |
|
| 731 |
|
| 732 |
@app.post("/split")
|
|
@@ -739,88 +300,71 @@ async def split(
|
|
| 739 |
rules: str = Form("[]"),
|
| 740 |
_: None = Depends(enforce_rate_limit),
|
| 741 |
):
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
# Adjust bboxes to parent coordinate space
|
| 770 |
-
for line in child_lines:
|
| 771 |
-
bbox = line["bbox"]
|
| 772 |
-
line["bbox"] = [
|
| 773 |
-
bbox[0] + x1,
|
| 774 |
-
bbox[1] + y1,
|
| 775 |
-
bbox[2] + x1,
|
| 776 |
-
bbox[3] + y1,
|
| 777 |
-
]
|
| 778 |
-
line["blockType"] = "text"
|
| 779 |
-
|
| 780 |
-
if len(child_lines) > MAX_CHILD_LINES:
|
| 781 |
-
child_lines = child_lines[:MAX_CHILD_LINES]
|
| 782 |
-
|
| 783 |
-
sanitized_splitter = _sanitize_label("splitter", splitter)
|
| 784 |
-
sanitized_schema = _sanitize_label("schemaType", schemaType)
|
| 785 |
-
parsed_settings = _parse_settings(settings)
|
| 786 |
-
parsed_rules = _parse_rules(rules)
|
| 787 |
-
|
| 788 |
-
raw_text = "\n".join([l["text"] for l in child_lines])
|
| 789 |
-
text_truncated = False
|
| 790 |
-
if len(raw_text) > 5000:
|
| 791 |
-
raw_text = raw_text[:5000]
|
| 792 |
-
text_truncated = True
|
| 793 |
-
|
| 794 |
-
llm_input = {
|
| 795 |
-
"schemaType": sanitized_schema,
|
| 796 |
-
"splitter": sanitized_splitter,
|
| 797 |
-
"page": {"width": width, "height": height},
|
| 798 |
-
"parentBox": parent_box,
|
| 799 |
-
"rawText": raw_text,
|
| 800 |
-
"ocrLines": child_lines,
|
| 801 |
-
"rawTextTruncated": text_truncated,
|
| 802 |
-
"ocrLinesTruncated": len(child_lines) >= MAX_CHILD_LINES,
|
| 803 |
-
"settings": parsed_settings,
|
| 804 |
-
"rules": parsed_rules,
|
| 805 |
}
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 824 |
|
| 825 |
|
| 826 |
if __name__ == "__main__":
|
|
|
|
| 2 |
import json
|
| 3 |
import math
|
| 4 |
import os
|
|
|
|
| 5 |
import secrets
|
|
|
|
| 6 |
from collections import defaultdict, deque
|
| 7 |
from time import monotonic
|
| 8 |
+
from typing import Any, Deque, DefaultDict
|
|
|
|
| 9 |
|
| 10 |
+
import cv2
|
| 11 |
import numpy as np
|
| 12 |
from fastapi import Depends, FastAPI, Form, HTTPException, Request, UploadFile, status
|
|
|
|
| 13 |
from fastapi.security import APIKeyHeader
|
| 14 |
+
from paddleocr import PaddleOCR
|
| 15 |
+
from paddleocr.ppstructure import PPStructure
|
| 16 |
|
| 17 |
+
from .llm_splitter import call_llm_splitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
ALLOWED_CONTENT_TYPES = {
|
| 20 |
"image/jpeg",
|
|
|
|
| 24 |
MAX_UPLOAD_BYTES = int(os.getenv("MAX_UPLOAD_BYTES", str(5 * 1024 * 1024)))
|
| 25 |
RATE_LIMIT_REQUESTS = int(os.getenv("RATE_LIMIT_REQUESTS", "30"))
|
| 26 |
RATE_LIMIT_WINDOW_SECONDS = float(os.getenv("RATE_LIMIT_WINDOW_SECONDS", "60"))
|
| 27 |
+
SERVICE_API_KEY = os.getenv("SERVICE_API_KEY")
|
| 28 |
+
if not SERVICE_API_KEY:
|
| 29 |
+
raise RuntimeError(
|
| 30 |
+
"SERVICE_API_KEY environment variable must be set before starting the OCR service"
|
| 31 |
+
)
|
| 32 |
API_KEY_HEADER_NAME = "X-API-Key"
|
| 33 |
MAX_CHILD_LINES = 500
|
| 34 |
MAX_JSON_DEPTH = 4
|
|
|
|
| 36 |
MAX_JSON_DICT_KEYS = 50
|
| 37 |
MAX_JSON_LIST_ITEMS = 100
|
| 38 |
|
| 39 |
+
app = FastAPI()
|
| 40 |
+
ocr = PaddleOCR(use_angle_cls=True, lang="en")
|
| 41 |
+
pp = PPStructure(show_log=False, layout=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
api_key_header = APIKeyHeader(name=API_KEY_HEADER_NAME, auto_error=False)
|
| 44 |
_rate_limit_lock = asyncio.Lock()
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def ensure_upload_is_safe(file: UploadFile) -> None:
|
|
|
|
| 49 |
content_type = (file.content_type or "").lower()
|
| 50 |
+
if content_type not in ALLOWED_CONTENT_TYPES:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
raise HTTPException(
|
| 52 |
status_code=status.HTTP_415_UNSUPPORTED_MEDIA_TYPE,
|
| 53 |
+
detail="Unsupported file type",
|
| 54 |
)
|
| 55 |
|
| 56 |
file.file.seek(0, os.SEEK_END)
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
|
| 66 |
+
async def verify_api_key(api_key: str | None = Depends(api_key_header)) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
if not api_key or not secrets.compare_digest(api_key, SERVICE_API_KEY):
|
| 68 |
raise HTTPException(
|
| 69 |
status_code=status.HTTP_401_UNAUTHORIZED,
|
|
|
|
| 91 |
window.append(now)
|
| 92 |
|
| 93 |
|
| 94 |
+
def _decode_image(file: UploadFile):
|
|
|
|
| 95 |
data = file.file.read()
|
| 96 |
if not data:
|
| 97 |
raise HTTPException(
|
| 98 |
status_code=status.HTTP_400_BAD_REQUEST,
|
| 99 |
detail="Uploaded file is empty",
|
| 100 |
)
|
| 101 |
+
img = cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR)
|
| 102 |
+
if img is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
raise HTTPException(
|
| 104 |
status_code=status.HTTP_400_BAD_REQUEST,
|
| 105 |
+
detail="Unable to decode image",
|
| 106 |
)
|
| 107 |
+
return img
|
| 108 |
|
| 109 |
|
| 110 |
+
def load_img(file: UploadFile):
|
| 111 |
ensure_upload_is_safe(file)
|
| 112 |
file.file.seek(0)
|
| 113 |
+
return _decode_image(file)
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
def _parse_json_field(name: str, raw: str, expected_type: type) -> Any:
|
|
|
|
| 274 |
return rules
|
| 275 |
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
@app.post("/ocr")
|
|
|
|
| 278 |
async def ocr_page(
|
| 279 |
file: UploadFile,
|
| 280 |
_: None = Depends(enforce_rate_limit),
|
| 281 |
):
|
| 282 |
+
img = load_img(file)
|
| 283 |
+
res = ocr.ocr(img, cls=True)
|
| 284 |
+
lines = []
|
| 285 |
+
full = []
|
| 286 |
+
for line in (res[0] or []):
|
| 287 |
+
(x1, y1, x2, y2), (txt, conf) = line
|
| 288 |
+
lines.append({"bbox": [x1, y1, x2, y2], "text": txt, "conf": float(conf)})
|
| 289 |
+
full.append(txt)
|
| 290 |
+
return {"text": "\n".join(full), "lines": lines}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
|
| 293 |
@app.post("/split")
|
|
|
|
| 300 |
rules: str = Form("[]"),
|
| 301 |
_: None = Depends(enforce_rate_limit),
|
| 302 |
):
|
| 303 |
+
img = load_img(file)
|
| 304 |
+
height, width = img.shape[:2]
|
| 305 |
+
parent_box = _parse_parent_bbox(parent_bbox, width, height)
|
| 306 |
+
x1, y1, x2, y2 = parent_box
|
| 307 |
+
x1_i, y1_i, x2_i, y2_i = [int(round(v)) for v in parent_box]
|
| 308 |
+
crop = img[y1_i:y2_i, x1_i:x2_i]
|
| 309 |
+
if crop.size == 0:
|
| 310 |
+
raise HTTPException(
|
| 311 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
| 312 |
+
detail="parent_bbox region is empty",
|
| 313 |
+
)
|
| 314 |
+
blocks = pp(crop)
|
| 315 |
+
|
| 316 |
+
child_lines = []
|
| 317 |
+
for b in blocks:
|
| 318 |
+
bx1, by1, bx2, by2 = b["bbox"]
|
| 319 |
+
sub = crop[by1:by2, bx1:bx2]
|
| 320 |
+
det = ocr.ocr(sub, cls=True)
|
| 321 |
+
for ln in (det[0] or []):
|
| 322 |
+
(lx1, ly1, lx2, ly2), (txt, conf) = ln
|
| 323 |
+
child_lines.append(
|
| 324 |
+
{
|
| 325 |
+
"bbox": [lx1 + bx1 + x1, ly1 + by1 + y1, lx2 + bx1 + x1, ly2 + by1 + y1],
|
| 326 |
+
"text": txt,
|
| 327 |
+
"conf": float(conf),
|
| 328 |
+
"blockType": b.get("type", "text"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
}
|
| 330 |
+
)
|
| 331 |
+
if len(child_lines) >= MAX_CHILD_LINES:
|
| 332 |
+
break
|
| 333 |
+
if len(child_lines) >= MAX_CHILD_LINES:
|
| 334 |
+
break
|
| 335 |
+
|
| 336 |
+
sanitized_splitter = _sanitize_label("splitter", splitter)
|
| 337 |
+
sanitized_schema = _sanitize_label("schemaType", schemaType)
|
| 338 |
+
parsed_settings = _parse_settings(settings)
|
| 339 |
+
parsed_rules = _parse_rules(rules)
|
| 340 |
+
|
| 341 |
+
raw_text = "\n".join([l["text"] for l in child_lines])
|
| 342 |
+
text_truncated = False
|
| 343 |
+
if len(raw_text) > 5000:
|
| 344 |
+
raw_text = raw_text[:5000]
|
| 345 |
+
text_truncated = True
|
| 346 |
+
|
| 347 |
+
llm_input = {
|
| 348 |
+
"schemaType": sanitized_schema,
|
| 349 |
+
"splitter": sanitized_splitter,
|
| 350 |
+
"page": {"width": width, "height": height},
|
| 351 |
+
"parentBox": parent_box,
|
| 352 |
+
"rawText": raw_text,
|
| 353 |
+
"ocrLines": child_lines,
|
| 354 |
+
"rawTextTruncated": text_truncated,
|
| 355 |
+
"ocrLinesTruncated": len(child_lines) >= MAX_CHILD_LINES,
|
| 356 |
+
"settings": parsed_settings,
|
| 357 |
+
"rules": parsed_rules,
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
try:
|
| 361 |
+
llm_result = await call_llm_splitter(llm_input)
|
| 362 |
+
except ValueError as exc:
|
| 363 |
+
raise HTTPException(
|
| 364 |
+
status_code=status.HTTP_502_BAD_GATEWAY,
|
| 365 |
+
detail=str(exc),
|
| 366 |
+
) from exc
|
| 367 |
+
return llm_result
|
| 368 |
|
| 369 |
|
| 370 |
if __name__ == "__main__":
|