Spaces:
Running
Running
File size: 20,479 Bytes
5fe125f 97bc6d7 5fe125f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import os
import torch
import torch.nn as nn
from transformers import AutoModel, GPT2Tokenizer
from utils.modifiedGPT2 import create_decoder
from utils.layer_mask import gaussian_layer_stack_pipeline
class DINOEncoder(nn.Module):
def __init__(self, model_id="facebook/dinov3-vits16-pretrain-lvd1689m", freeze=True):
super().__init__()
self.model = AutoModel.from_pretrained(model_id)
if freeze:
for p in self.model.parameters():
p.requires_grad = False
@torch.no_grad()
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
pixel_values: [B, C, H, W]
returns patches: [B, Np, Cenc]
"""
out = self.model(pixel_values=pixel_values)
tokens = out.last_hidden_state # [B, 1+Np, Cenc] (CLS + patches) for ViT-like
# Skip a few special tokens if your backbone adds them; adjust as needed.
patches = tokens[:, 5:, :] # [B, Np, Cenc]
return patches
class DinoUNet(nn.Module):
def __init__(self, model_name="facebook/dinov3-convnext-small-pretrain-lvd1689m", freeze=True):
super().__init__()
self.encoder = AutoModel.from_pretrained(model_name)
# NOTE: confirm channels of the chosen hidden state; 768 is common for small convnext/dinov3
self.channel_adapter = nn.Conv2d(768, 512, kernel_size=1)
self.decoder = nn.Sequential(
nn.Conv2d(512, 256, 3, padding=1), nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(inplace=True),
nn.Conv2d(64, 1, 1)
)
if freeze:
for m in (self.encoder, self.channel_adapter, self.decoder):
for p in m.parameters():
p.requires_grad = False
@torch.no_grad()
def forward(self, x: torch.Tensor, num_layers: int) -> torch.Tensor:
"""
x: [B, C, H, W]; returns mask: [B, 1, H', W'] (your upsampling stack defines H',W')
"""
enc_feats = self.encoder(x, output_hidden_states=True, return_dict=True)
# take the last 4D feature map from hidden_states
feats = next(h for h in reversed(enc_feats.hidden_states) if isinstance(h, torch.Tensor) and h.ndim == 4)
feats = self.channel_adapter(feats)
pred = self.decoder(feats) # (B,1,h,w)
_, _, segmentation_mask = gaussian_layer_stack_pipeline(pred, n_layers = num_layers)
return segmentation_mask # [B, num_layers, h, w]
class LinearProjection(nn.Module):
def __init__(self, input_dim=384, output_dim=768, freeze=False):
super().__init__()
self.proj = nn.Linear(input_dim, output_dim)
if freeze:
for p in self.proj.parameters():
p.requires_grad = False
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: [B, Np, input_dim] -> [B, Np, output_dim]
return self.proj(x)
class CustomModel(nn.Module):
def __init__(
self,
device: str = "cuda",
ENCODER_MODEL_PATH: str | None = "dino_encoder.pth",
SEGMENTER_MODEL_PATH: str | None = "dino_segmenter.pth",
DECODER_MODEL_PATH: str | None = "dino_decoder.pth",
LINEAR_PROJECTION_PATH: str | None = "linear_projection.pth",
freeze_encoder: bool = True,
freeze_segmenter: bool = True,
freeze_linear_projection: bool = False,
freeze_decoder: bool = False,
attention_implementation: str = "sdpa",
):
super().__init__()
self.device = torch.device(device)
# Encoder
self.encoder = DINOEncoder()
if ENCODER_MODEL_PATH and os.path.exists(ENCODER_MODEL_PATH):
self.encoder.load_state_dict(torch.load(ENCODER_MODEL_PATH, map_location="cpu"), strict=False)
print("Loaded encoder weights from", ENCODER_MODEL_PATH)
if freeze_encoder:
self.encoder.eval()
# Segmenter
self.segmenter = DinoUNet()
if SEGMENTER_MODEL_PATH and os.path.exists(SEGMENTER_MODEL_PATH):
self.segmenter.load_state_dict(torch.load(SEGMENTER_MODEL_PATH, map_location="cpu"), strict=False)
print("Loaded segmenter weights from", SEGMENTER_MODEL_PATH)
if freeze_segmenter:
self.segmenter.eval()
# Decoder (modified GPT-2)
self.decoder = create_decoder(attention=attention_implementation) # must expose .config.hidden_size & .config.num_hidden_layers
if DECODER_MODEL_PATH and os.path.exists(DECODER_MODEL_PATH):
self.decoder.load_state_dict(torch.load(DECODER_MODEL_PATH, map_location="cpu"), strict=False)
print("Loaded decoder weights from", DECODER_MODEL_PATH)
if freeze_decoder:
self.decoder.eval()
# Linear projection: DINO hidden -> GPT2 hidden
enc_h = self.encoder.model.config.hidden_size
dec_h = self.decoder.config.hidden_size
self.linear_projection = LinearProjection(input_dim=enc_h, output_dim=dec_h)
if LINEAR_PROJECTION_PATH and os.path.exists(LINEAR_PROJECTION_PATH):
self.linear_projection.load_state_dict(torch.load(LINEAR_PROJECTION_PATH, map_location="cpu"), strict=False)
print("Loaded linear projection weights from", LINEAR_PROJECTION_PATH)
if freeze_linear_projection:
self.linear_projection.eval()
# Tokenizer (pad token for GPT-2)
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.pad_token_id = self.tokenizer.pad_token_id # ✅ use ID, not string
self.num_layers = self.decoder.config.num_hidden_layers
# move everything once
self.to(self.device)
def forward(self, pixel_values: torch.Tensor, tgt_ids: torch.Tensor | None = None, **kwargs) -> dict:
"""
pixel_values: [B,C,H,W], float
tgt_ids: [B,T], long (token IDs), padded with pad_token_id if any padding is present
"""
pixel_values = pixel_values.to(self.device, non_blocking=True)
# Visual path
patches = self.encoder(pixel_values) # [B,Np,Cenc]
projected_patches = self.linear_projection(patches) # [B,Np,n_embd]
# Segmentation path per layer
segmented_layers = self.segmenter(pixel_values, self.num_layers) # [B,n_layers,H,W] (per current decoder)
# Text path (optional teacher-forced training)
labels = None
if tgt_ids is not None:
if tgt_ids.dtype != torch.long:
tgt_ids = tgt_ids.long()
tgt_ids = tgt_ids.to(self.device, non_blocking=True) # [B,T]
text_embeds = self.decoder.transformer.wte(tgt_ids) # [B,T,n_embd]
inputs_embeds = torch.cat([projected_patches, text_embeds], dim=1) # [B,Np+T,n_embd]
# Labels: ignore prefix tokens (vision) and PADs in text
B, Np, _ = projected_patches.shape
labels_prefix = torch.full((B, Np), -100, device=self.device, dtype=torch.long)
text_labels = tgt_ids.clone()
text_labels[text_labels == self.pad_token_id] = -100 # ✅ compare to ID
labels = torch.cat([labels_prefix, text_labels], dim=1) # [B,Np+T]
else:
inputs_embeds = projected_patches
# Decoder forward
out = self.decoder(inputs_embeds=inputs_embeds, segmentation_mask=segmented_layers, labels=labels, **kwargs)
return out
@torch.inference_mode()
def generate(
self,
pixel_values: torch.Tensor,
max_new_tokens: int = 100,
output_attentions: bool = False,
) -> torch.Tensor:
"""
pixel_values: [B,C,H,W], float
returns generated_ids: [B, T]
"""
pixel_values = pixel_values.to(self.device, non_blocking=True)
# Visual path
patches = self.encoder(pixel_values) # [B,Np,Cenc]
projected_patches = self.linear_projection(patches) # [B,Np,n_embd]
# Segmentation path per layer
segmented_layers = self.segmenter(pixel_values, self.num_layers) # [B,n_layers,H,W] (per current decoder)
# Generate
output = self.decoder.generate(
inputs_embeds=projected_patches,
max_new_tokens=max_new_tokens,
do_sample=False,
repetition_penalty=1.2,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.pad_token_id,
use_cache=True,
segmentation_mask=segmented_layers,
prefix_allowed_length=0,
plot_attention_mask=False,
plot_attention_mask_layer=[],
plot_attention_map=False,
plot_attention_map_layer=[],
plot_attention_map_generation=0,
output_attentions=output_attentions,
return_dict_in_generate=True,
)
# Remove prefix tokens (vision)
generated_ids = output.sequences#[:, projected_patches.shape[1]:] # [B,T]
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return generated_ids, generated_text, output.attentions if output_attentions else None
def create_complete_model(device: str = "cuda", **kwargs) -> CustomModel:
model = CustomModel(device=device, **kwargs)
return model
def save_complete_model(model: CustomModel, save_path: str, device: str = "cuda") -> None:
# Ensure folder exists
os.makedirs(os.path.dirname(save_path) or ".", exist_ok=True)
# Save on CPU to keep checkpoint portable
orig_device = next(model.parameters()).device
model.to("cpu")
torch.save(model.state_dict(), save_path)
print(f"Saved complete model weights to {save_path}")
# Restore model device
model.to(device if isinstance(device, str) else orig_device)
def save_checkpoint(model: CustomModel, optimizer: torch.optim.Optimizer, save_path: str) -> None:
# Ensure folder exists
os.makedirs(os.path.dirname(save_path) or ".", exist_ok=True)
checkpoint = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
}
torch.save(checkpoint, save_path)
print(f"Saved checkpoint to {save_path}")
def load_complete_model(model: CustomModel, load_path: str, device: str = "cpu", strict: bool = True) -> CustomModel:
if not os.path.exists(load_path):
print(f"No weights found at {load_path}")
model.to(device)
return model
# Load to CPU first, then move to target device
state = torch.load(load_path, map_location="cpu")
missing, unexpected = model.load_state_dict(state, strict=strict)
if not strict:
if missing:
print(f"[load warning] Missing keys: {missing}")
if unexpected:
print(f"[load warning] Unexpected keys: {unexpected}")
model.to(device)
print(f"Loaded complete model weights from {load_path}")
return model
def load_checkpoint(model: CustomModel, optimizer: torch.optim.Optimizer, load_path: str, device: str = "cpu") -> tuple[CustomModel, torch.optim.Optimizer]:
if not os.path.exists(load_path):
print(f"No checkpoint found at {load_path}")
model.to(device)
return model, optimizer
# Load to CPU first, then move to target device
checkpoint = torch.load(load_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
model.to(device)
print(f"Loaded checkpoint from {load_path}")
return model, optimizer
from transformers import AutoImageProcessor
from PIL import Image
import logging
import re
# Configure basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# ==============================================================================
# 1. Architecture Definition (MLP)
# ==============================================================================
class EmbeddingClassifier(nn.Module):
"""
Flexible MLP Classifier: Input Embeddings -> Hidden Layers -> Logits.
"""
def __init__(self, embedding_dim, num_classes, custom_dims=(512, 256, 256),
activation="gelu", dropout=0.05, bn=False, use_layernorm=True):
super().__init__()
layers = []
# First layer: Embeddings -> First hidden dimension
layers.append(nn.Linear(embedding_dim, custom_dims[0]))
if use_layernorm: layers.append(nn.LayerNorm(custom_dims[0]))
elif bn: layers.append(nn.BatchNorm1d(custom_dims[0]))
layers.append(nn.GELU() if activation.lower() == "gelu" else nn.ReLU())
if dropout > 0: layers.append(nn.Dropout(dropout))
# Intermediate layers
for i in range(len(custom_dims) - 1):
layers.append(nn.Linear(custom_dims[i], custom_dims[i + 1]))
if use_layernorm: layers.append(nn.LayerNorm(custom_dims[i + 1]))
elif bn: layers.append(nn.BatchNorm1d(custom_dims[i + 1]))
layers.append(nn.GELU() if activation.lower() == "gelu" else nn.ReLU())
if dropout > 0: layers.append(nn.Dropout(dropout))
# Final layer: Last hidden dim -> Num classes (Logits)
layers.append(nn.Linear(custom_dims[-1], num_classes))
self.classifier = nn.Sequential(*layers)
def forward(self, embeddings):
return self.classifier(embeddings)
# ==============================================================================
# 2. Prediction Wrapper Class
# ==============================================================================
class ChestXrayPredictor:
"""
Wrapper class responsible for receiving an image, processing it,
and returning class probabilities.
"""
def __init__(self, base_model, classifier, processor, label_cols, device):
self.base_model = base_model
self.classifier = classifier
self.processor = processor
self.label_cols = label_cols
self.device = device
# Ensure models are in eval mode
self.base_model.eval()
self.classifier.eval()
def predict(self, image_source):
"""
Runs inference on a single image.
Args:
image_source: File path (str) or PIL.Image object.
Returns:
dict: { "Class_Name": probability (0.0 - 1.0) }
"""
try:
# 1. Flexible Input Handling (Path or Object)
if isinstance(image_source, str):
image = Image.open(image_source).convert('RGB')
else:
image = image_source.convert('RGB')
# 2. Preprocessing
inputs = self.processor(images=image, return_tensors="pt")
pixel_values = inputs['pixel_values'].to(self.device)
# 3. Inference
with torch.no_grad():
# A. Get Embeddings from DINO
outputs = self.base_model(pixel_values=pixel_values)
# Handle different transformer output formats
if hasattr(outputs, 'last_hidden_state'):
embeddings = outputs.last_hidden_state.mean(dim=1)
else:
embeddings = outputs[0].mean(dim=1)
# B. Classify Embeddings
logits = self.classifier(embeddings)
# Convert to standard Python float list for JSON serialization
probs = torch.sigmoid(logits).cpu().numpy()[0].tolist()
# 4. Format Output
return {
label: round(prob, 4)
for label, prob in zip(self.label_cols, probs)
}
except Exception as e:
logger.error(f"Error predicting image: {e}")
return {"error": str(e)}
# ==============================================================================
# 3. Factory Function (The "Builder")
# ==============================================================================
def create_classifier(checkpoint_path, model_id="facebook/dinov3-vits16-pretrain-lvd1689m", device=None):
"""
Loads the checkpoint, reconstructs the specific architecture,
and returns a ready-to-use ChestXrayPredictor instance.
Args:
checkpoint_path (str): Path to the .pth file.
model_id (str): HuggingFace model ID for DINO.
device (str, optional): 'cuda' or 'cpu'. Auto-detects if None.
Returns:
ChestXrayPredictor: Initialized object ready for prediction.
"""
device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"🔄 Starting model initialization on: {device}")
try:
# A. Load Checkpoint
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
label_cols = checkpoint.get('label_cols', [
"Cardiomegaly", "Consolidation", "Edema",
"Atelectasis", "Pleural Effusion", "No Findings"
])
# B. Load Base Model (DINO)
logger.info("🤖 Loading DINO backbone...")
base_model = AutoModel.from_pretrained(model_id).to(device)
# Load fine-tuned DINO weights if they exist in checkpoint
if 'base_model_state_dict' in checkpoint:
base_model.load_state_dict(checkpoint['base_model_state_dict'])
logger.info(" - Fine-tuned DINO weights loaded from checkpoint.")
else:
logger.info(" - Using default pre-trained DINO weights.")
processor = AutoImageProcessor.from_pretrained(model_id)
# C. Detect Embedding Dimension
if hasattr(base_model.config, 'hidden_size'):
embedding_dim = base_model.config.hidden_size
else:
# Dummy inference to detect output size
with torch.no_grad():
dummy = torch.randn(1, 3, 224, 224).to(device)
out = base_model(pixel_values=dummy)
embedding_dim = out.last_hidden_state.shape[-1]
# D. Reconstruct Classifier Architecture
logger.info("🏗️ Reconstructing classifier architecture...")
model_state = checkpoint['model_state_dict']
classifier = _build_mlp_from_state(model_state, embedding_dim)
# Load classifier weights
classifier.load_state_dict(model_state)
classifier.to(device)
logger.info("✅ Model created successfully.")
# E. Return the Wrapper Instance
return ChestXrayPredictor(base_model, classifier, processor, label_cols, device)
except Exception as e:
logger.error(f"❌ Fatal error creating the classifier: {e}")
raise e
def _build_mlp_from_state(model_state, embedding_dim):
"""
Private helper function to inspect state_dict and rebuild the MLP architecture.
"""
linear_layers = []
for key, val in model_state.items():
# Look for 2D weights (Linear layers) inside the classifier
if 'classifier' in key and key.endswith('.weight') and len(val.shape) == 2:
match = re.search(r'classifier\.(\d+)\.weight', key)
if match:
layer_idx = int(match.group(1))
linear_layers.append((layer_idx, val.shape[1], val.shape[0])) # idx, in_features, out_features
if not linear_layers:
raise ValueError("No linear layers found in checkpoint. Check architecture.")
# Sort by layer index to ensure correct order
linear_layers.sort(key=lambda x: x[0])
num_classes = linear_layers[-1][2]
hidden_dims = tuple([x[2] for x in linear_layers[:-1]])
# Detect Normalization types
uses_bn = any('running_mean' in k for k in model_state.keys())
has_norm = any(k.endswith('.weight') and len(model_state[k].shape) == 1 for k in model_state.keys() if 'classifier' in k)
uses_layernorm = has_norm and not uses_bn
return EmbeddingClassifier(
embedding_dim=embedding_dim,
num_classes=num_classes,
custom_dims=hidden_dims,
bn=uses_bn,
use_layernorm=uses_layernorm
)
|