File size: 20,479 Bytes
5fe125f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97bc6d7
 
 
 
5fe125f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import os
import torch
import torch.nn as nn
from transformers import AutoModel, GPT2Tokenizer

from utils.modifiedGPT2 import create_decoder

from utils.layer_mask import gaussian_layer_stack_pipeline

class DINOEncoder(nn.Module):
    def __init__(self, model_id="facebook/dinov3-vits16-pretrain-lvd1689m", freeze=True):
        super().__init__()
        self.model = AutoModel.from_pretrained(model_id)
        if freeze:
            for p in self.model.parameters():
                p.requires_grad = False
    @torch.no_grad()
    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        """
        pixel_values: [B, C, H, W]
        returns patches: [B, Np, Cenc]
        """
        out = self.model(pixel_values=pixel_values)
        tokens = out.last_hidden_state  # [B, 1+Np, Cenc] (CLS + patches) for ViT-like
        # Skip a few special tokens if your backbone adds them; adjust as needed.
        patches = tokens[:, 5:, :]  # [B, Np, Cenc]
        return patches

class DinoUNet(nn.Module):
    def __init__(self, model_name="facebook/dinov3-convnext-small-pretrain-lvd1689m", freeze=True):
        super().__init__()
        self.encoder = AutoModel.from_pretrained(model_name)
        # NOTE: confirm channels of the chosen hidden state; 768 is common for small convnext/dinov3
        self.channel_adapter = nn.Conv2d(768, 512, kernel_size=1)
        self.decoder = nn.Sequential(
            nn.Conv2d(512, 256, 3, padding=1), nn.ReLU(inplace=True),
            nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(inplace=True),
            nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(inplace=True),
            nn.Conv2d(64, 1, 1)
        )
        if freeze:
            for m in (self.encoder, self.channel_adapter, self.decoder):
                for p in m.parameters():
                    p.requires_grad = False
    
    @torch.no_grad()
    def forward(self, x: torch.Tensor, num_layers: int) -> torch.Tensor:
        """
        x: [B, C, H, W]; returns mask: [B, 1, H', W'] (your upsampling stack defines H',W')
        """
        enc_feats = self.encoder(x, output_hidden_states=True, return_dict=True)
        # take the last 4D feature map from hidden_states
        feats = next(h for h in reversed(enc_feats.hidden_states) if isinstance(h, torch.Tensor) and h.ndim == 4)
        feats = self.channel_adapter(feats)
        pred = self.decoder(feats)                    # (B,1,h,w)
        _, _, segmentation_mask = gaussian_layer_stack_pipeline(pred, n_layers = num_layers)
        return segmentation_mask    # [B, num_layers, h, w]


class LinearProjection(nn.Module):
    def __init__(self, input_dim=384, output_dim=768, freeze=False):
        super().__init__()
        self.proj = nn.Linear(input_dim, output_dim)
        if freeze:
            for p in self.proj.parameters():
                p.requires_grad = False

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: [B, Np, input_dim] -> [B, Np, output_dim]
        return self.proj(x)


class CustomModel(nn.Module):
    def __init__(
        self,
        device: str = "cuda",
        ENCODER_MODEL_PATH: str | None = "dino_encoder.pth",
        SEGMENTER_MODEL_PATH: str | None = "dino_segmenter.pth",
        DECODER_MODEL_PATH: str | None = "dino_decoder.pth",
        LINEAR_PROJECTION_PATH: str | None = "linear_projection.pth",
        freeze_encoder: bool = True,
        freeze_segmenter: bool = True,
        freeze_linear_projection: bool = False,
        freeze_decoder: bool = False,
        attention_implementation: str = "sdpa",
    ):
        super().__init__()
        self.device = torch.device(device)

        # Encoder
        self.encoder = DINOEncoder()
        if ENCODER_MODEL_PATH and os.path.exists(ENCODER_MODEL_PATH):
            self.encoder.load_state_dict(torch.load(ENCODER_MODEL_PATH, map_location="cpu"), strict=False)
            print("Loaded encoder weights from", ENCODER_MODEL_PATH)
        if freeze_encoder:
            self.encoder.eval()

        # Segmenter
        self.segmenter = DinoUNet()
        if SEGMENTER_MODEL_PATH and os.path.exists(SEGMENTER_MODEL_PATH):
            self.segmenter.load_state_dict(torch.load(SEGMENTER_MODEL_PATH, map_location="cpu"), strict=False)
            print("Loaded segmenter weights from", SEGMENTER_MODEL_PATH)
        if freeze_segmenter:
            self.segmenter.eval()

        # Decoder (modified GPT-2)
        self.decoder = create_decoder(attention=attention_implementation)  # must expose .config.hidden_size & .config.num_hidden_layers
        if DECODER_MODEL_PATH and os.path.exists(DECODER_MODEL_PATH):
            self.decoder.load_state_dict(torch.load(DECODER_MODEL_PATH, map_location="cpu"), strict=False)
            print("Loaded decoder weights from", DECODER_MODEL_PATH)
        if freeze_decoder:
            self.decoder.eval()

        # Linear projection: DINO hidden -> GPT2 hidden
        enc_h = self.encoder.model.config.hidden_size
        dec_h = self.decoder.config.hidden_size
        self.linear_projection = LinearProjection(input_dim=enc_h, output_dim=dec_h)
        if LINEAR_PROJECTION_PATH and os.path.exists(LINEAR_PROJECTION_PATH):
            self.linear_projection.load_state_dict(torch.load(LINEAR_PROJECTION_PATH, map_location="cpu"), strict=False)
            print("Loaded linear projection weights from", LINEAR_PROJECTION_PATH)
        if freeze_linear_projection:
            self.linear_projection.eval()

        # Tokenizer (pad token for GPT-2)
        self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        if self.tokenizer.pad_token_id is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        self.pad_token_id = self.tokenizer.pad_token_id  # ✅ use ID, not string

        self.num_layers = self.decoder.config.num_hidden_layers

        # move everything once
        self.to(self.device)

    def forward(self, pixel_values: torch.Tensor, tgt_ids: torch.Tensor | None = None, **kwargs) -> dict:
        """
        pixel_values: [B,C,H,W], float
        tgt_ids: [B,T], long (token IDs), padded with pad_token_id if any padding is present
        """
        pixel_values = pixel_values.to(self.device, non_blocking=True)

        # Visual path
        patches = self.encoder(pixel_values)                           # [B,Np,Cenc]
        projected_patches = self.linear_projection(patches)            # [B,Np,n_embd]

        # Segmentation path per layer
        segmented_layers = self.segmenter(pixel_values, self.num_layers) # [B,n_layers,H,W] (per current decoder)

        # Text path (optional teacher-forced training)
        labels = None
        if tgt_ids is not None:
            if tgt_ids.dtype != torch.long:
                tgt_ids = tgt_ids.long()
            tgt_ids = tgt_ids.to(self.device, non_blocking=True)       # [B,T]
            text_embeds = self.decoder.transformer.wte(tgt_ids)        # [B,T,n_embd]
            inputs_embeds = torch.cat([projected_patches, text_embeds], dim=1)  # [B,Np+T,n_embd]

            # Labels: ignore prefix tokens (vision) and PADs in text
            B, Np, _ = projected_patches.shape
            labels_prefix = torch.full((B, Np), -100, device=self.device, dtype=torch.long)
            text_labels = tgt_ids.clone()
            text_labels[text_labels == self.pad_token_id] = -100       # ✅ compare to ID
            labels = torch.cat([labels_prefix, text_labels], dim=1)    # [B,Np+T]
        else:
            inputs_embeds = projected_patches

        # Decoder forward
        out = self.decoder(inputs_embeds=inputs_embeds, segmentation_mask=segmented_layers, labels=labels, **kwargs)
        return out
    
    @torch.inference_mode()
    def generate(
        self,
        pixel_values: torch.Tensor,
        max_new_tokens: int = 100,
        output_attentions: bool = False,
    ) -> torch.Tensor:
        """
        pixel_values: [B,C,H,W], float
        returns generated_ids: [B, T]
        """
        pixel_values = pixel_values.to(self.device, non_blocking=True)

        # Visual path
        patches = self.encoder(pixel_values)                           # [B,Np,Cenc]
        projected_patches = self.linear_projection(patches)            # [B,Np,n_embd]

        # Segmentation path per layer
        segmented_layers = self.segmenter(pixel_values, self.num_layers) # [B,n_layers,H,W] (per current decoder)

        # Generate
        output = self.decoder.generate(
            inputs_embeds=projected_patches,
            max_new_tokens=max_new_tokens,
            do_sample=False,
            repetition_penalty=1.2,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.pad_token_id,
            use_cache=True,
            segmentation_mask=segmented_layers,
            prefix_allowed_length=0,
            plot_attention_mask=False,
            plot_attention_mask_layer=[],
            plot_attention_map=False,
            plot_attention_map_layer=[],
            plot_attention_map_generation=0,
            output_attentions=output_attentions,
            return_dict_in_generate=True,
        )
        # Remove prefix tokens (vision)
        generated_ids = output.sequences#[:, projected_patches.shape[1]:]   # [B,T]
        generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_ids, generated_text, output.attentions if output_attentions else None

def create_complete_model(device: str = "cuda", **kwargs) -> CustomModel:
    model = CustomModel(device=device, **kwargs)
    return model

def save_complete_model(model: CustomModel, save_path: str, device: str = "cuda") -> None:
    # Ensure folder exists
    os.makedirs(os.path.dirname(save_path) or ".", exist_ok=True)

    # Save on CPU to keep checkpoint portable
    orig_device = next(model.parameters()).device
    model.to("cpu")
    torch.save(model.state_dict(), save_path)
    print(f"Saved complete model weights to {save_path}")

    # Restore model device
    model.to(device if isinstance(device, str) else orig_device)

def save_checkpoint(model: CustomModel, optimizer: torch.optim.Optimizer, save_path: str) -> None:
    # Ensure folder exists
    os.makedirs(os.path.dirname(save_path) or ".", exist_ok=True)

    checkpoint = {
        "model_state_dict": model.state_dict(),
        "optimizer_state_dict": optimizer.state_dict(),
    }
    torch.save(checkpoint, save_path)
    print(f"Saved checkpoint to {save_path}")

def load_complete_model(model: CustomModel, load_path: str, device: str = "cpu", strict: bool = True) -> CustomModel:
    if not os.path.exists(load_path):
        print(f"No weights found at {load_path}")
        model.to(device)
        return model

    # Load to CPU first, then move to target device
    state = torch.load(load_path, map_location="cpu")
    missing, unexpected = model.load_state_dict(state, strict=strict)
    if not strict:
        if missing:
            print(f"[load warning] Missing keys: {missing}")
        if unexpected:
            print(f"[load warning] Unexpected keys: {unexpected}")

    model.to(device)
    print(f"Loaded complete model weights from {load_path}")
    return model

def load_checkpoint(model: CustomModel, optimizer: torch.optim.Optimizer, load_path: str, device: str = "cpu") -> tuple[CustomModel, torch.optim.Optimizer]:
    if not os.path.exists(load_path):
        print(f"No checkpoint found at {load_path}")
        model.to(device)
        return model, optimizer

    # Load to CPU first, then move to target device
    checkpoint = torch.load(load_path, map_location="cpu")
    model.load_state_dict(checkpoint["model_state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer_state_dict"])

    model.to(device)
    print(f"Loaded checkpoint from {load_path}")
    return model, optimizer

from transformers import AutoImageProcessor
from PIL import Image
import logging
import re

# Configure basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# ==============================================================================
# 1. Architecture Definition (MLP)
# ==============================================================================
class EmbeddingClassifier(nn.Module):
    """
    Flexible MLP Classifier: Input Embeddings -> Hidden Layers -> Logits.
    """
    def __init__(self, embedding_dim, num_classes, custom_dims=(512, 256, 256),
                 activation="gelu", dropout=0.05, bn=False, use_layernorm=True):
        super().__init__()
        layers = []
        
        # First layer: Embeddings -> First hidden dimension
        layers.append(nn.Linear(embedding_dim, custom_dims[0]))
        if use_layernorm: layers.append(nn.LayerNorm(custom_dims[0]))
        elif bn: layers.append(nn.BatchNorm1d(custom_dims[0]))
        layers.append(nn.GELU() if activation.lower() == "gelu" else nn.ReLU())
        if dropout > 0: layers.append(nn.Dropout(dropout))

        # Intermediate layers
        for i in range(len(custom_dims) - 1):
            layers.append(nn.Linear(custom_dims[i], custom_dims[i + 1]))
            if use_layernorm: layers.append(nn.LayerNorm(custom_dims[i + 1]))
            elif bn: layers.append(nn.BatchNorm1d(custom_dims[i + 1]))
            layers.append(nn.GELU() if activation.lower() == "gelu" else nn.ReLU())
            if dropout > 0: layers.append(nn.Dropout(dropout))

        # Final layer: Last hidden dim -> Num classes (Logits)
        layers.append(nn.Linear(custom_dims[-1], num_classes))
        self.classifier = nn.Sequential(*layers)

    def forward(self, embeddings):
        return self.classifier(embeddings)


# ==============================================================================
# 2. Prediction Wrapper Class
# ==============================================================================
class ChestXrayPredictor:
    """
    Wrapper class responsible for receiving an image, processing it, 
    and returning class probabilities.
    """
    
    def __init__(self, base_model, classifier, processor, label_cols, device):
        self.base_model = base_model
        self.classifier = classifier
        self.processor = processor
        self.label_cols = label_cols
        self.device = device
        
        # Ensure models are in eval mode
        self.base_model.eval()
        self.classifier.eval()

    def predict(self, image_source):
        """
        Runs inference on a single image.

        Args:
            image_source: File path (str) or PIL.Image object.

        Returns:
            dict: { "Class_Name": probability (0.0 - 1.0) }
        """
        try:
            # 1. Flexible Input Handling (Path or Object)
            if isinstance(image_source, str):
                image = Image.open(image_source).convert('RGB')
            else:
                image = image_source.convert('RGB')

            # 2. Preprocessing
            inputs = self.processor(images=image, return_tensors="pt")
            pixel_values = inputs['pixel_values'].to(self.device)

            # 3. Inference
            with torch.no_grad():
                # A. Get Embeddings from DINO
                outputs = self.base_model(pixel_values=pixel_values)
                
                # Handle different transformer output formats
                if hasattr(outputs, 'last_hidden_state'):
                    embeddings = outputs.last_hidden_state.mean(dim=1)
                else:
                    embeddings = outputs[0].mean(dim=1)

                # B. Classify Embeddings
                logits = self.classifier(embeddings)
                
                # Convert to standard Python float list for JSON serialization
                probs = torch.sigmoid(logits).cpu().numpy()[0].tolist()

            # 4. Format Output
            return {
                label: round(prob, 4) 
                for label, prob in zip(self.label_cols, probs)
            }

        except Exception as e:
            logger.error(f"Error predicting image: {e}")
            return {"error": str(e)}


# ==============================================================================
# 3. Factory Function (The "Builder")
# ==============================================================================
def create_classifier(checkpoint_path, model_id="facebook/dinov3-vits16-pretrain-lvd1689m", device=None):
    """
    Loads the checkpoint, reconstructs the specific architecture, 
    and returns a ready-to-use ChestXrayPredictor instance.

    Args:
        checkpoint_path (str): Path to the .pth file.
        model_id (str): HuggingFace model ID for DINO.
        device (str, optional): 'cuda' or 'cpu'. Auto-detects if None.
    
    Returns:
        ChestXrayPredictor: Initialized object ready for prediction.
    """
    device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
    logger.info(f"🔄 Starting model initialization on: {device}")

    try:
        # A. Load Checkpoint
        checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
        label_cols = checkpoint.get('label_cols', [
            "Cardiomegaly", "Consolidation", "Edema",
            "Atelectasis", "Pleural Effusion", "No Findings"
        ])
        
        # B. Load Base Model (DINO)
        logger.info("🤖 Loading DINO backbone...")
        base_model = AutoModel.from_pretrained(model_id).to(device)
        
        # Load fine-tuned DINO weights if they exist in checkpoint
        if 'base_model_state_dict' in checkpoint:
            base_model.load_state_dict(checkpoint['base_model_state_dict'])
            logger.info("   - Fine-tuned DINO weights loaded from checkpoint.")
        else:
            logger.info("   - Using default pre-trained DINO weights.")
        
        processor = AutoImageProcessor.from_pretrained(model_id)

        # C. Detect Embedding Dimension
        if hasattr(base_model.config, 'hidden_size'):
            embedding_dim = base_model.config.hidden_size
        else:
            # Dummy inference to detect output size
            with torch.no_grad():
                dummy = torch.randn(1, 3, 224, 224).to(device)
                out = base_model(pixel_values=dummy)
                embedding_dim = out.last_hidden_state.shape[-1]

        # D. Reconstruct Classifier Architecture
        logger.info("🏗️  Reconstructing classifier architecture...")
        model_state = checkpoint['model_state_dict']
        classifier = _build_mlp_from_state(model_state, embedding_dim)
        
        # Load classifier weights
        classifier.load_state_dict(model_state)
        classifier.to(device)
        
        logger.info("✅ Model created successfully.")

        # E. Return the Wrapper Instance
        return ChestXrayPredictor(base_model, classifier, processor, label_cols, device)

    except Exception as e:
        logger.error(f"❌ Fatal error creating the classifier: {e}")
        raise e


def _build_mlp_from_state(model_state, embedding_dim):
    """
    Private helper function to inspect state_dict and rebuild the MLP architecture.
    """
    linear_layers = []
    for key, val in model_state.items():
        # Look for 2D weights (Linear layers) inside the classifier
        if 'classifier' in key and key.endswith('.weight') and len(val.shape) == 2:
            match = re.search(r'classifier\.(\d+)\.weight', key)
            if match:
                layer_idx = int(match.group(1))
                linear_layers.append((layer_idx, val.shape[1], val.shape[0])) # idx, in_features, out_features

    if not linear_layers:
        raise ValueError("No linear layers found in checkpoint. Check architecture.")
        
    # Sort by layer index to ensure correct order
    linear_layers.sort(key=lambda x: x[0])
    
    num_classes = linear_layers[-1][2]
    hidden_dims = tuple([x[2] for x in linear_layers[:-1]])
    
    # Detect Normalization types
    uses_bn = any('running_mean' in k for k in model_state.keys())
    has_norm = any(k.endswith('.weight') and len(model_state[k].shape) == 1 for k in model_state.keys() if 'classifier' in k)
    uses_layernorm = has_norm and not uses_bn

    return EmbeddingClassifier(
        embedding_dim=embedding_dim,
        num_classes=num_classes,
        custom_dims=hidden_dims,
        bn=uses_bn,
        use_layernorm=uses_layernorm
    )