Spaces:
Runtime error
Runtime error
| from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline | |
| from diffusers import EulerAncestralDiscreteScheduler | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
| from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation | |
| from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
| from transformers import AutoImageProcessor, UperNetForSemanticSegmentation | |
| import os | |
| import random | |
| import torch | |
| import cv2 | |
| import uuid | |
| from PIL import Image, ImageOps | |
| import numpy as np | |
| from pytorch_lightning import seed_everything | |
| import math | |
| from langchain.llms.openai import OpenAI | |
| def prompts(name, description): | |
| def decorator(func): | |
| func.name = name | |
| func.description = description | |
| return func | |
| return decorator | |
| def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100): | |
| new_size = new_image.size | |
| old_size = old_image.size | |
| easy_img = np.array(new_image) | |
| gt_img_array = np.array(old_image) | |
| pos_w = (new_size[0] - old_size[0]) // 2 | |
| pos_h = (new_size[1] - old_size[1]) // 2 | |
| kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma) | |
| kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma) | |
| kernel = np.multiply(kernel_h, np.transpose(kernel_w)) | |
| kernel[steps:-steps, steps:-steps] = 1 | |
| kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1] | |
| kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)] | |
| kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1] | |
| kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps] | |
| kernel = np.expand_dims(kernel, 2) | |
| kernel = np.repeat(kernel, 3, 2) | |
| weight = np.linspace(0, 1, steps) | |
| top = np.expand_dims(weight, 1) | |
| top = np.repeat(top, old_size[0] - 2 * steps, 1) | |
| top = np.expand_dims(top, 2) | |
| top = np.repeat(top, 3, 2) | |
| weight = np.linspace(1, 0, steps) | |
| down = np.expand_dims(weight, 1) | |
| down = np.repeat(down, old_size[0] - 2 * steps, 1) | |
| down = np.expand_dims(down, 2) | |
| down = np.repeat(down, 3, 2) | |
| weight = np.linspace(0, 1, steps) | |
| left = np.expand_dims(weight, 0) | |
| left = np.repeat(left, old_size[1] - 2 * steps, 0) | |
| left = np.expand_dims(left, 2) | |
| left = np.repeat(left, 3, 2) | |
| weight = np.linspace(1, 0, steps) | |
| right = np.expand_dims(weight, 0) | |
| right = np.repeat(right, old_size[1] - 2 * steps, 0) | |
| right = np.expand_dims(right, 2) | |
| right = np.repeat(right, 3, 2) | |
| kernel[:steps, steps:-steps] = top | |
| kernel[-steps:, steps:-steps] = down | |
| kernel[steps:-steps, :steps] = left | |
| kernel[steps:-steps, -steps:] = right | |
| pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] | |
| gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img | |
| gaussian_gt_img = gaussian_gt_img.astype(np.int64) | |
| easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img | |
| gaussian_img = Image.fromarray(easy_img) | |
| return gaussian_img | |
| def get_new_image_name(org_img_name, func_name="update"): | |
| head_tail = os.path.split(org_img_name) | |
| head = head_tail[0] | |
| tail = head_tail[1] | |
| name_split = tail.split('.')[0].split('_') | |
| this_new_uuid = str(uuid.uuid4())[0:4] | |
| if len(name_split) == 1: | |
| most_org_file_name = name_split[0] | |
| recent_prev_file_name = name_split[0] | |
| new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) | |
| else: | |
| assert len(name_split) == 4 | |
| most_org_file_name = name_split[3] | |
| recent_prev_file_name = name_split[0] | |
| new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) | |
| return os.path.join(head, new_file_name) | |
| class MaskFormer: | |
| def __init__(self, device): | |
| print(f"Initializing MaskFormer to {device}") | |
| self.device = device | |
| self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
| self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
| def inference(self, image_path, text): | |
| threshold = 0.5 | |
| min_area = 0.02 | |
| padding = 20 | |
| original_image = Image.open(image_path) | |
| image = original_image.resize((512, 512)) | |
| inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device) | |
| with torch.no_grad(): | |
| outputs = self.model(**inputs) | |
| mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold | |
| area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) | |
| if area_ratio < min_area: | |
| return None | |
| true_indices = np.argwhere(mask) | |
| mask_array = np.zeros_like(mask, dtype=bool) | |
| for idx in true_indices: | |
| padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) | |
| mask_array[padded_slice] = True | |
| visual_mask = (mask_array * 255).astype(np.uint8) | |
| image_mask = Image.fromarray(visual_mask) | |
| return image_mask.resize(original_image.size) | |
| class ImageEditing: | |
| def __init__(self, device): | |
| print(f"Initializing ImageEditing to {device}") | |
| self.device = device | |
| self.mask_former = MaskFormer(device=self.device) | |
| self.revision = 'fp16' if 'cuda' in device else None | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device) | |
| def inference_remove(self, inputs): | |
| image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| return self.inference_replace(f"{image_path},{to_be_removed_txt},background") | |
| def inference_replace(self, inputs): | |
| image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",") | |
| original_image = Image.open(image_path) | |
| original_size = original_image.size | |
| mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) | |
| updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)), | |
| mask_image=mask_image.resize((512, 512))).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="replace-something") | |
| updated_image = updated_image.resize(original_size) | |
| updated_image.save(updated_image_path) | |
| print( | |
| f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class InstructPix2Pix: | |
| def __init__(self, device): | |
| print(f"Initializing InstructPix2Pix to {device}") | |
| self.device = device | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", | |
| safety_checker=None, | |
| torch_dtype=self.torch_dtype).to(device) | |
| self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) | |
| def inference(self, inputs): | |
| """Change style of image.""" | |
| print("===>Starting InstructPix2Pix Inference") | |
| image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| original_image = Image.open(image_path) | |
| image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="pix2pix") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class Text2Image: | |
| def __init__(self, device): | |
| print(f"Initializing Text2Image to {device}") | |
| self.device = device | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe.to(device) | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
| 'fewer digits, cropped, worst quality, low quality' | |
| def inference(self, text): | |
| image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
| prompt = text + ', ' + self.a_prompt | |
| image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0] | |
| image.save(image_filename) | |
| print( | |
| f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}") | |
| return image_filename | |
| class ImageCaptioning: | |
| def __init__(self, device): | |
| print(f"Initializing ImageCaptioning to {device}") | |
| self.device = device | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| self.model = BlipForConditionalGeneration.from_pretrained( | |
| "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device) | |
| def inference(self, image_path): | |
| inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) | |
| out = self.model.generate(**inputs) | |
| captions = self.processor.decode(out[0], skip_special_tokens=True) | |
| print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") | |
| return captions | |
| class Image2Canny: | |
| def __init__(self, device): | |
| print("Initializing Image2Canny") | |
| self.low_threshold = 100 | |
| self.high_threshold = 200 | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| image = np.array(image) | |
| canny = cv2.Canny(image, self.low_threshold, self.high_threshold) | |
| canny = canny[:, :, None] | |
| canny = np.concatenate([canny, canny, canny], axis=2) | |
| canny = Image.fromarray(canny) | |
| updated_image_path = get_new_image_name(inputs, func_name="edge") | |
| canny.save(updated_image_path) | |
| print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}") | |
| return updated_image_path | |
| class CannyText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing CannyText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
| 'fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Text: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Line: | |
| def __init__(self, device): | |
| print("Initializing Image2Line") | |
| self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| mlsd = self.detector(image) | |
| updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
| mlsd.save(updated_image_path) | |
| print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}") | |
| return updated_image_path | |
| class LineText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing LineText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype | |
| ) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
| 'fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Text: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Hed: | |
| def __init__(self, device): | |
| print("Initializing Image2Hed") | |
| self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| hed = self.detector(image) | |
| updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") | |
| hed.save(updated_image_path) | |
| print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}") | |
| return updated_image_path | |
| class HedText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing HedText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype | |
| ) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
| 'fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="hed2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Scribble: | |
| def __init__(self, device): | |
| print("Initializing Image2Scribble") | |
| self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| scribble = self.detector(image, scribble=True) | |
| updated_image_path = get_new_image_name(inputs, func_name="scribble") | |
| scribble.save(updated_image_path) | |
| print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}") | |
| return updated_image_path | |
| class ScribbleText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing ScribbleText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype | |
| ) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
| 'fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="scribble2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Pose: | |
| def __init__(self, device): | |
| print("Initializing Image2Pose") | |
| self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| pose = self.detector(image) | |
| updated_image_path = get_new_image_name(inputs, func_name="human-pose") | |
| pose.save(updated_image_path) | |
| print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
| return updated_image_path | |
| class PoseText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing PoseText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.num_inference_steps = 20 | |
| self.seed = -1 | |
| self.unconditional_guidance_scale = 9.0 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
| ' fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="pose2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Seg: | |
| def __init__(self, device): | |
| print("Initializing Image2Seg") | |
| self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small") | |
| self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small") | |
| self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], | |
| [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], | |
| [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], | |
| [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], | |
| [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], | |
| [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], | |
| [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], | |
| [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], | |
| [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], | |
| [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], | |
| [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], | |
| [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], | |
| [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], | |
| [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], | |
| [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], | |
| [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], | |
| [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], | |
| [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], | |
| [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], | |
| [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], | |
| [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], | |
| [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], | |
| [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], | |
| [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], | |
| [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], | |
| [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], | |
| [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], | |
| [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], | |
| [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], | |
| [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], | |
| [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], | |
| [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], | |
| [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], | |
| [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], | |
| [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], | |
| [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], | |
| [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], | |
| [102, 255, 0], [92, 0, 255]] | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| pixel_values = self.image_processor(image, return_tensors="pt").pixel_values | |
| with torch.no_grad(): | |
| outputs = self.image_segmentor(pixel_values) | |
| seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
| color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 | |
| palette = np.array(self.ade_palette) | |
| for label, color in enumerate(palette): | |
| color_seg[seg == label, :] = color | |
| color_seg = color_seg.astype(np.uint8) | |
| segmentation = Image.fromarray(color_seg) | |
| updated_image_path = get_new_image_name(inputs, func_name="segmentation") | |
| segmentation.save(updated_image_path) | |
| print(f"\nProcessed Image2Seg, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
| return updated_image_path | |
| class SegText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing SegText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", | |
| torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
| ' fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="segment2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Depth: | |
| def __init__(self, device): | |
| print("Initializing Image2Depth") | |
| self.depth_estimator = pipeline('depth-estimation') | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| depth = self.depth_estimator(image)['depth'] | |
| depth = np.array(depth) | |
| depth = depth[:, :, None] | |
| depth = np.concatenate([depth, depth, depth], axis=2) | |
| depth = Image.fromarray(depth) | |
| updated_image_path = get_new_image_name(inputs, func_name="depth") | |
| depth.save(updated_image_path) | |
| print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
| return updated_image_path | |
| class DepthText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing DepthText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained( | |
| "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
| ' fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="depth2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class Image2Normal: | |
| def __init__(self, device): | |
| print("Initializing Image2Normal") | |
| self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas") | |
| self.bg_threhold = 0.4 | |
| def inference(self, inputs): | |
| image = Image.open(inputs) | |
| original_size = image.size | |
| image = self.depth_estimator(image)['predicted_depth'][0] | |
| image = image.numpy() | |
| image_depth = image.copy() | |
| image_depth -= np.min(image_depth) | |
| image_depth /= np.max(image_depth) | |
| x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3) | |
| x[image_depth < self.bg_threhold] = 0 | |
| y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3) | |
| y[image_depth < self.bg_threhold] = 0 | |
| z = np.ones_like(x) * np.pi * 2.0 | |
| image = np.stack([x, y, z], axis=2) | |
| image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5 | |
| image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
| image = Image.fromarray(image) | |
| image = image.resize(original_size) | |
| updated_image_path = get_new_image_name(inputs, func_name="normal-map") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
| return updated_image_path | |
| class NormalText2Image: | |
| def __init__(self, device): | |
| print(f"Initializing NormalText2Image to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.controlnet = ControlNetModel.from_pretrained( | |
| "fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
| torch_dtype=self.torch_dtype) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.to(device) | |
| self.seed = -1 | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
| ' fewer digits, cropped, worst quality, low quality' | |
| def inference(self, inputs): | |
| image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| image = Image.open(image_path) | |
| self.seed = random.randint(0, 65535) | |
| seed_everything(self.seed) | |
| prompt = f'{instruct_text}, {self.a_prompt}' | |
| image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
| guidance_scale=9.0).images[0] | |
| updated_image_path = get_new_image_name(image_path, func_name="normal2image") | |
| image.save(updated_image_path) | |
| print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path | |
| class VisualQuestionAnswering: | |
| def __init__(self, device): | |
| print(f"Initializing VisualQuestionAnswering to {device}") | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| self.device = device | |
| self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
| self.model = BlipForQuestionAnswering.from_pretrained( | |
| "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device) | |
| def inference(self, inputs): | |
| image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
| raw_image = Image.open(image_path).convert('RGB') | |
| inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype) | |
| out = self.model.generate(**inputs) | |
| answer = self.processor.decode(out[0], skip_special_tokens=True) | |
| print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, " | |
| f"Output Answer: {answer}") | |
| return answer | |
| class InfinityOutPainting: | |
| template_model = True # Add this line to show this is a template model. | |
| def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering): | |
| # self.llm = OpenAI(temperature=0) | |
| self.ImageCaption = ImageCaptioning | |
| self.ImageEditing = ImageEditing | |
| self.ImageVQA = VisualQuestionAnswering | |
| self.a_prompt = 'best quality, extremely detailed' | |
| self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
| 'fewer digits, cropped, worst quality, low quality' | |
| def get_BLIP_vqa(self, image, question): | |
| inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device, | |
| self.ImageVQA.torch_dtype) | |
| out = self.ImageVQA.model.generate(**inputs) | |
| answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True) | |
| print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}") | |
| return answer | |
| def get_BLIP_caption(self, image): | |
| inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device, | |
| self.ImageCaption.torch_dtype) | |
| out = self.ImageCaption.model.generate(**inputs) | |
| BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True) | |
| return BLIP_caption | |
| # def check_prompt(self, prompt): | |
| # check = f"Here is a paragraph with adjectives. " \ | |
| # f"{prompt} " \ | |
| # f"Please change all plural forms in the adjectives to singular forms. " | |
| # return self.llm(check) | |
| def get_imagine_caption(self, image, imagine): | |
| BLIP_caption = self.get_BLIP_caption(image) | |
| background_color = self.get_BLIP_vqa(image, 'what is the background color of this image') | |
| style = self.get_BLIP_vqa(image, 'what is the style of this image') | |
| imagine_prompt = f"let's pretend you are an excellent painter and now " \ | |
| f"there is an incomplete painting with {BLIP_caption} in the center, " \ | |
| f"please imagine the complete painting and describe it" \ | |
| f"you should consider the background color is {background_color}, the style is {style}" \ | |
| f"You should make the painting as vivid and realistic as possible" \ | |
| f"You can not use words like painting or picture" \ | |
| f"and you should use no more than 50 words to describe it" | |
| # caption = self.llm(imagine_prompt) if imagine else BLIP_caption | |
| caption = BLIP_caption | |
| # caption = self.check_prompt(caption) | |
| print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print( | |
| f'Prompt: {caption}') | |
| return caption | |
| def resize_image(self, image, max_size=100000, multiple=8): | |
| aspect_ratio = image.size[0] / image.size[1] | |
| new_width = int(math.sqrt(max_size * aspect_ratio)) | |
| new_height = int(new_width / aspect_ratio) | |
| new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple) | |
| return image.resize((new_width, new_height)) | |
| def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt): | |
| old_img = original_img | |
| while (old_img.size != tosize): | |
| prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine) | |
| crop_w = 15 if old_img.size[0] != tosize[0] else 0 | |
| crop_h = 15 if old_img.size[1] != tosize[1] else 0 | |
| old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h)) | |
| temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0], | |
| expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[ | |
| 1]) | |
| temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size, | |
| color="white") | |
| x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2 | |
| temp_canvas.paste(old_img, (x, y)) | |
| temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height)) | |
| resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask) | |
| image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask, | |
| height=resized_temp_canvas.height, width=resized_temp_canvas.width, | |
| num_inference_steps=50).images[0].resize( | |
| (temp_canvas.width, temp_canvas.height), Image.ANTIALIAS) | |
| image = blend_gt2pt(old_img, image) | |
| old_img = image | |
| return old_img | |
| def inference(self, inputs): | |
| image_path, resolution = inputs.split(',') | |
| width, height = resolution.split('x') | |
| tosize = (int(width), int(height)) | |
| image = Image.open(image_path) | |
| image = ImageOps.crop(image, (10, 10, 10, 10)) | |
| out_painted_image = self.dowhile(image, tosize, 4, True, False) | |
| updated_image_path = get_new_image_name(image_path, func_name="outpainting") | |
| out_painted_image.save(updated_image_path) | |
| print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, " | |
| f"Output Image: {updated_image_path}") | |
| return updated_image_path |