antoniaebner's picture
add Sohvi's code
87e7d05
raw
history blame
2.21 kB
"""
This files includes a predict function for the Tox21.
As an input it takes a list of SMILES and it outputs a nested dictionary with
SMILES and target names as keys.
"""
# ---------------------------------------------------------------------------------------
# Dependencies
from collections import defaultdict
import numpy as np
from src.model import Tox21XGBClassifier
from src.preprocess import create_descriptors
# ---------------------------------------------------------------------------------------
def predict(smiles_list: list[str]) -> dict[str, dict[str, float]]:
"""Applies the classifier to a list of SMILES strings. Returns prediction=0.0 for
any molecule that could not be cleaned.
Args:
smiles_list (list[str]): list of SMILES strings
Returns:
dict: nested prediction dictionary, following {'<smiles>': {'<target>': <pred>}}
"""
print(f"Received {len(smiles_list)} SMILES strings")
# preprocessing pipeline
features, mol_mask = create_descriptors(
smiles_list,
)
print(f"Created {features.shape[1]} descriptors for the molecules.")
print(f"{len(mol_mask) - sum(mol_mask)} molecules removed during cleaning. All predictions for these will be set to 0.0.")
# setup model
model = Tox21XGBClassifier(seed=42)
model_dir = "assets/"
model.load_model(model_dir)
print(f"Loaded model and feature processors from {model_dir}")
# make predictions
predictions = defaultdict(dict)
feat_indices = np.cumsum(mol_mask) - 1
for target in model.tasks:
feature_processors = model.feature_processors[target]
task_features = feature_processors['selector'].transform(features)
task_features = feature_processors['scaler'].transform(task_features)
target_pred = model.predict(target, task_features)
for smiles, is_clean, i in zip(smiles_list, mol_mask, feat_indices):
predictions[smiles][target] = float(target_pred[i]) if is_clean else 0.0
return predictions
if __name__ == "__main__":
# simple test
test_smiles = [
"CCO",
"CCN",
"invalid_smiles",
]
preds = predict(test_smiles)
print(preds)